Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Magn Reson Imaging ; 90: 37-43, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35413425

RESUMO

PURPOSE: The use of dielectric pads to redistribute the radiofrequency fields is currently a popular solution for 7 T MRI practical applications, especially in brain imaging. In this work, we tackle several downsides of the previous generation of dielectric pads. This new silicon carbide recipe makes them MR invisible and greatly extends the performance lifespan. METHOD: We produce a set of two 10x10x1cm3 dielectric pads based on silicon carbide (SiC) powder dispersed in 4-Fluoro 1, 3-dioxalan-2-one (FEC) and polyethylene Glycol (PEG). The stability of the complex permittivity and the invisibility of the pads are characterized experimentally. Numerical simulations are done to evaluate global and local SAR over the head in presence of the pads. B0, B1+ and standard imaging sequences are performed on healthy volunteers. RESULTS: SiC pads are compared to state-of-the-art perovskite based dielectric pads with similar dielectric properties (barium titanate). Numerical simulations confirm that head and local SAR are similar. MRI measurements confirm that the pads do not induce susceptibility artefacts and improve B1+ amplitude in the temporal lobe regions by 25% on average. CONCLUSION: We demonstrate the long-term performance and invisibility of these new pads in order to increase the contrast in the brain temporal lobes in a commercial 7 T MRI head coil.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Compostos Inorgânicos de Carbono , Humanos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Ondas de Rádio , Compostos de Silício
2.
Sci Rep ; 9(1): 6022, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30988328

RESUMO

Electromagnetic cloaking, as challenging as it may be to the physicist and the engineer has become a topical subject over the past decade. Thanks to the transformations optics (TO) invisibility devices are in sight even though quite drastic limitations remain yet to be lifted. The extreme material properties which are deduced from TO can be achieved in practice using dispersive metamaterials. However, the bandwidth over which a metamaterial cloak is efficient is drastically limited. We design and simulate a spherical cloak which takes into account the dispersive nature of relative permittivity and permeability tensors realized by plasma-like metamaterials. This spherical cloak works over a broad frequency-band even though these materials are of a highly dispersive nature. We establish two equations of state that link the eigenvalues of the permittivity and permeability tensors in every spherical cloak regardless of the geometrical transformation. Frequency dispersive properties do not disrupt cloaking as long as the equations of states are satisfied in the metamaterial cloak.

3.
Magn Reson Med ; 79(3): 1753-1765, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28580667

RESUMO

PURPOSE: Perovskites are greatly used nowadays in many technological applications because of their high permittivity, more specifically in the form of aqueous solutions, for MRI dielectric shimming. In this study, full dielectric characterizations of highly concentrated CaTiO3 /BaTiO3 water mixtures were carried out and new permittivity maxima was reached. METHODS: Permittivity measurements were done on aqueous solutions from 0%v/v to dry powder. The permittivity dependence with pressure was investigated. Scanning electron microscopy images were performed on a few representative solutions. BaTiO3 pressed pads of different thicknesses, permittivities, and distances to the head were compared in a 7T MRI scanner. RESULTS: Perovskite aqueous mixtures undergo a pressure-dependent phase transition in terms of permittivity, with increasing water content. A new relative permittivity maximum of 475 was achieved. Microscopic images revealed structural differences between phases. A B1+ improvement in the temporal lobe was obtained with thin, high permittivity BaTiO3 head. CONCLUSIONS: This new preparation method allows improved pad geometry and placement, as a result of the high relative permittivity values achieved. This method has great significance for medical applications of MRI dielectric shimming, being easy to replicate and implement on a large scale. Magn Reson Med 79:1753-1765, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.


Assuntos
Compostos de Bário/química , Compostos de Cálcio/química , Condutividade Elétrica , Imageamento por Ressonância Magnética/instrumentação , Óxidos/química , Titânio/química , Água/química , Adulto , Desenho de Equipamento , Cabeça/diagnóstico por imagem , Humanos , Masculino , Imagens de Fantasmas
4.
Opt Express ; 15(3): 1096-106, 2007 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-19532337

RESUMO

The prediction and the engineering of the electromagnetic properties of metamaterials are increasingly important issues. Recently, several approaches have been proposed to compute these properties through appropriate averages of local fields within the unit cell. In particular, we proposed a Field Summation method that has been used successfully to determine either analytically or numerically the effective properties of different composites and metamaterials. But this method also provides interesting clues for understanding the behaviour of these materials. It helps chose appropriate planes to visualize the fields using electromagnetic simulation software, and understand behaviours leading to either positive or negative effective parameters, with either small or large values. It helps establish whether the materials can be adequately described by effective parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...