Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Protein Pept Lett ; 28(5): 489-500, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33143604

RESUMO

BACKGROUND: Physical parameters like pH and temperature play a major role in the design of an industrial enzymatic process. Enzyme stability and activity are greatly influenced by these parameters; hence optimization and control of these parameters becomes a key point in determining the economic feasibility of the process. OBJECTIVE: This study was taken up with the objective to optimize physical parameters for maximum stability and activity of xylose reductase from D. nepalensis NCYC 3413 through separate and simultaneous optimization studies and comparison thereof. METHODS: Effects of pH and temperature on the activity and stability of xylose reductase from Debaryomyces nepalensis NCYC 3413 were investigated by enzyme assays and independent variables were optimised using surface response methodology. Enzyme activity and stability were optimised separately and concurrently to decipher the appropriate conditions. RESULTS: Optimized conditions of pH and temperature for xylose reductase activity were determined to be 7.1 and 27 °C respectively, with predicted responses of specific activity (72.3 U/mg) and half-life time (566 min). The experimental values (specific activity 50.2 U/mg, half-life time 818 min) were on par with predicted values indicating the significance of the model. CONCLUSION: Simultaneous optimization of xylose reductase activity and stability using statistical methods is effective as compared to optimisation of the parameters separately.


Assuntos
Aldeído Redutase/química , Proteínas Fúngicas/química , Saccharomycetales/enzimologia , Estabilidade Enzimática , Temperatura Alta , Concentração de Íons de Hidrogênio
2.
Eur Biophys J ; 49(3-4): 267-277, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32356119

RESUMO

The stability of Debaryomyces nepalensis NCYC 3413 xylose reductase, a homodimeric enzyme recombinantly expressed and purified from E. coli Rosetta cells, was studied at different pH ranging from 5.0 to 10.0. Deactivation kinetics at different pH were studied by analyzing residual activity of the recombinant enzyme over time at 40 °C whereas conformational changes and stability dependence were investigated by using circular dichroism and differential scanning calorimetry. Four osmolytes viz. glycerol, sucrose, trehalose and sorbitol were explored for their effect on the deactivation and melting temperatures of the enzyme under neutral and extreme pH conditions. The enzyme was found to be catalytically and structurally stable at pH 7.0 with half-life of 250 min and a melting temperature of 50 °C. It was found that alteration in both secondary and tertiary structures caused enzyme deactivation in acidic pH while increased deactivation rates at alkaline pH was attributed to the variation of tertiary structure over time. Estimated thermodynamic parameters also showed that the enzyme stability was highest at neutral pH with ΔH of 348 kcal/mole and ΔG40 of 9.53 kcal/mole. All four osmolytes were effective in enhancing enzyme stability by several folds at extreme pH with sorbitol being the most efficient, which increased enzyme half-life by 11-fold at pH 10.0 and 8-fold at pH 5.0.


Assuntos
Aldeído Redutase/química , Osmose/efeitos dos fármacos , Desdobramento de Proteína/efeitos dos fármacos , Saccharomycetales/enzimologia , Estabilidade Enzimática/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA