Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(37): eadi8219, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37713491

RESUMO

Nonoxidative propane dehydrogenation (PDH) produces on-site propylene for value-added chemicals. While commercial, its modest selectivity and catalyst deactivation hamper the process efficiency and limit operation to lower temperatures. We demonstrate PDH in a microwave (MW)-heated reactor over PtSn/SiO2 catalyst pellets loaded in a SiC monolith acting as MW susceptor and a heat distributor while ensuring comparable conditions with conventional reactors. Time-on-stream experiments show active and stable operation at 500°C without hydrogen addition. Upon increasing temperature or feed partial pressure at high space velocity, catalysts under MWs show resistance in coking and sintering, high activity, and selectivity, starkly contrasting conventional reactors whose catalyst undergoes deactivation. Mechanistic differences in coke formation are exposed. Gas-solid temperature gradients are computationally investigated, and nanoscale temperature inhomogeneities are proposed to rationalize the different performances of the heating modes. The approach highlights the great potential of electrification of endothermic catalytic reactions.

2.
Lab Chip ; 23(14): 3160-3171, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37338202

RESUMO

The detection of the spread of toxic gas molecules in the air at low concentration in the field requires a robust miniaturized system combined with an analytical technique that is portable and able to detect and identify the molecules, as is the case with surface enhanced Raman scattering (SERS). This work aims to address capability gaps faced by first responders in real-time detection, identification and monitoring of neurotoxic gases by developing robust, reliable and reusable SERS microfluidic chips. Thus, the key performance attributes of a portable SERS detection system that must be addressed in detail are its limit of detection, response time and reusability. To this purpose, we integrate a 3D plasmonic architecture based on closely packed mesoporous silica (MCM48) nanospheres decorated with Au nanoparticle arrays, denoted as MCM48@Au, into a Si microfluidic chip designed and used for preconcentration and label-free detection of gases at a trace concentration level. The SERS performance of the plasmonic platform is thoroughly analyzed using DMMP as a model neurotoxic simulant over a 1 cm2 SERS active area and over a range of concentrations from 100 ppbV to 2.5 ppmV. The preconcentration-based SERS signal amplification by the mesoporous silica moieties is evaluated against dense silica counterparts, denoted as Stöber@Au. To assess the potential for applications in the field, the microfluidic SERS chip has been interrogated with a portable Raman spectrometer, evaluated with temporal and spatial resolution and subjected to several gas detection/regeneration cycles. The reusable SERS chip shows exceptional performance for the label-free monitoring of 2.5 ppmV gaseous DMMP.

4.
ACS Sens ; 6(6): 2241-2251, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34043325

RESUMO

Surface-enhanced Raman scattering (SERS) is a powerful spectroscopic technique for selective detection and quantification of molecules at extremely low concentrations. However, practical SERS applications for gaseous chemicals with small cross section is still in its early stages. We herein report a plasmonic-sorbent thin-film platform with integrated Raman internal standard with outstanding SERS sensing capabilities for chemical warfare agents (CWA) simulants. The thin film is constituted of close-packed core-shell Au@Ag nanorods individually encapsulated within a ZIF-8 framework (Au@Ag@ZIF-8). While the Au@Ag nanoparticles amplify the Raman signal of molecules located near their surface, the ZIF-8 framework plays a key role in the trapping of the dimethyl methylphosphonate (DMMP) or 2-chloroethyl ethyl sulfide (CEES) from the gas phase as well as Raman internal standard. The underlying adsorption mechanism of the molecules within the ZIF-8 framework as well as the interaction between DMMP and Ag surface are investigated by computational simulations. Outstanding SERS sensing capabilities of Au@Ag@ZIF-8 thin films, in terms of response time, quantification limit, reproducibility, and recyclability, are demonstrated for dimethyl methylphosphonate (DMMP) and 2-chloroethyl ethyl sulfide (CEES), selected as CWA simulants of sarin gas and mustard gas, respectively. A limit of detection (LOD) of 0.2 ppbV is reported for DMMP. Additionally, experiments performed with portable Raman equipment detect 2.5 ppmV for DMMP in ambient air and 76 ppbV for CEES in N2, with response times of 21 and 54 s, respectively. This proof of concept opens the door for handheld SERS-based gas sensing at ultralow concentrations in practical applications, such as homeland security, critical infrastructure protection, chemical process monitoring, or personalized medicine.


Assuntos
Substâncias para a Guerra Química , Nanopartículas Metálicas , Ouro , Reprodutibilidade dos Testes , Prata
5.
Membranes (Basel) ; 11(2)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540798

RESUMO

In this study, we report the impact of the magnetic field on protein permeability through magnetic-responsive, block copolymer, nanocomposite membranes with hydrophilic and hydrophobic characters. The hydrophilic nanocomposite membranes were composed of spherical polymeric nanoparticles (NPs) synthesized through polymerization-induced self-assembly (PISA) with iron oxide NPs coated with quaternized poly(2-dimethylamino)ethyl methacrylate. The hydrophobic nanocomposite membranes were prepared via nonsolvent-induced phase separation (NIPS) containing poly (methacrylic acid) and meso-2,3-dimercaptosuccinic acid-coated superparamagnetic nanoparticles (SPNPs). The permeation experiments were carried out using bovine serum albumin (BSA) as the model solute, in the absence of the magnetic field and under permanent and cyclic magnetic field conditions OFF/ON (strategy 1) and ON/OFF (strategy 2). It was observed that the magnetic field led to a lower reduction in the permeate fluxes of magnetic-responsive membranes during BSA permeation, regardless of the magnetic field strategy used, than that obtained in the absence of the magnetic field. Nevertheless, a comparative analysis of the effect caused by the two cyclic magnetic field strategies showed that strategy 2 allowed for a lower reduction of the original permeate fluxes during BSA permeation and higher protein sieving coefficients. Overall, these novel magneto-responsive block copolymer nanocomposite membranes proved to be competent in mitigating biofouling phenomena in bioseparation processes.

6.
Nanoscale Adv ; 3(4): 1087-1095, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36133300

RESUMO

One of the hallmarks of microwave irradiation is its selective heating mechanism. In the past 30 years, alternative designs of chemical reactors have been introduced, where the microwave (MW) absorber occupies a limited reactor volume but the surrounding environment is MW transparent. This advantage results in a different heating profile or even the possibility to quickly cool down the system. Simultaneous cooling-microwave heating has been largely adopted for organic chemical transformations. However, to the best of our knowledge there are no reports of its application in the field of nanocluster synthesis. In this work, we propose an innovative one-pot procedure for the synthesis of Cu nanoclusters. The cluster nucleation was selectively MW-activated inside the pores of a highly ordered mesoporous substrate. Once the nucleation event occurred, the crystallization reaction was instantaneously quenched, precluding the growth events and favoring the production of Cu clusters with a homogenous size distribution. Herein, we demonstrated that Cu nanoclusters could be successfully adopted for radical cascade annulations of N-alkoxybenzamides, resulting in various tricyclic and tetracyclic isoquinolones, which are widely present in lots of natural products and bioactive compounds. Compared to reported homogeneous methods, supported Cu nanoclusters provide a better platform for a green, sustainable and efficient heterogeneous approach for the synthesis of tricyclic and tetracyclic isoquinolones, avoiding a variety of toxic waste/byproducts and metal contamination in the final products.

7.
ACS Appl Mater Interfaces ; 12(32): 36458-36467, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32646210

RESUMO

We present a simple, versatile, and low-cost approach for the preparation of surface-enhanced Raman spectroscopy (SERS)-active regions within a microfluidic channel 50 cm in length. The approach involves the UV-light-driven formation of polyoxometalate-decorated gold nanostructures, Au@POM (POM: H3PW12O40 (PW) and H3PMo12O40 (PMo)), that self-assemble in situ on the surface of the polydimethylsiloxane (PDMS) microchannels without any extra functionalization procedure. The fabricated LoCs were characterized by scanning electron microscopy (SEM), UV-vis, Raman, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) techniques. The SERS activity of the resulting Au@POM-coated lab-on-a-chip (LoC) devices was evaluated in both static and flow conditions using rhodamine R6G. The SERS response of Au@PW-based LoCs was found to be superior to Au@PMo counterparts and outstanding when compared to reported data on metal@POM nanocomposites. We demonstrate the potentialities of both Au@POM-coated LoCs as analytical platforms for real-time detection of the organophosphorous pesticide paraoxon-methyl at 10-6 M concentration level.

8.
Nanoscale ; 12(23): 12602-12612, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32501469

RESUMO

Lamellar nanoporous gold thin films, constituted of a stack of very thin layers of porous gold, are synthesized by chemical etching from a stack of successively deposited nanolayers of copper and gold. The gold ligament size, the pore size and the distance between lamellas are tunable in the few tens nanometer range by controlling the initial thickness of the layers and the etching time. The SERS activity of these lamellar porous gold films is characterized by their SERS responses after adsorption of probe bipyridine and naphtalenethiol molecules. The SERS signal is investigated as a function of the bipyridine concentration from 10-14 mol L-1 to 10-3 mol L-1. The higher SERS response corresponds to an experimental detection limit down to 10-12 mol L-1. These performance is mainly attributed to the specific nanoporous gold architecture and the larger accessible surface to volume ratio. The lamellar nanoporous gold substrate is explored for sensitive SERS detection of dimethyl methylphosphonate (DMMP), a surrogate molecule of the highly toxic G-series nerve agents. The resultant nanostructure facilitates the diffusion of target molecules through the nanopores and their localization at the enhancing metallic surface leading to the unequivocal Raman signature of DMMP at a concentration of 5 parts per million.

9.
Mikrochim Acta ; 187(4): 247, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32219540

RESUMO

Surface-enhanced Raman spectroscopy (SERS) is gaining importance as an ultrasensitive analytical tool for routine high-throughput analysis of a variety of molecular compounds. One of the main challenges is the development of robust, reproducible and cost-effective SERS substrates. In this work, we study the SERS activity of 3D silver mirror-like micro-pyramid structures extended in the z-direction up to 3.7 µm (G0 type substrate) or 7.7 µm (G1 type substrate), prepared by Si-based microfabrication technologies, for trace detection of organophosphorous pesticides, using paraoxon-methyl as probe molecule. The average relative standard deviation (RSD) for the SERS intensity of the peak displayed at 1338 cm-1 recorded over a centimetre scale area of the substrate is below 13% for pesticide concentrations in the range 10-6 to 10-15 mol L-1. This data underlies the spatial uniformity of the SERS response provided by the microfabrication approach. According to finite-difference time-domain (FDTD) simulations, such remarkable feature is mainly due to the contribution on electromagnetic field enhancement of edge plasmon polaritons (EPPs), propagating along the pyramid edges where the pesticide molecules are preferentially adsorbed. Graphical abstract.


Assuntos
Manufaturas , Paraoxon/análogos & derivados , Praguicidas/análise , Prata/química , Adsorção , Paraoxon/análise , Paraoxon/química , Praguicidas/química , Reprodutibilidade dos Testes , Análise Espectral Raman/métodos
10.
J Hazard Mater ; 384: 121279, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31606709

RESUMO

The development of SERS substrates for chemical detection of specific analytes requires appropriate selection of plasmonic metal and the surface where it is deposited. Here we deposited Ag nanoplates on three substrates: i) conventional SiO2/Si wafer, ii) stainless steel mesh and iii) graphite foils. The SERS enhancement of the signal was studied for Rhodamine 6 G (R6 G) as common liquid phase probe molecule. We conducted a comprehensive study with λ = 532, 633 and 785 nm on all the substrates. The best substrate was investigated, at the optimum laser 785 nm, for gas phase detection of dimethyl methyl phosphonate (DMMP), simulant of the G-series nerve agents, at a concentration of 2.5 ppmV (14 mg/m3). The spectral fingerprint was clearly observed; with variations on the relative intensities of SERS Raman bands compared to bulk DMMP in liquid phase reflects the DMMP-Ag interactions. These interactions were simulated by Density Functional Theory (DFT) calculations and the simulated spectra matched with the experimental one. Finally, we were detected the characteristics DMMP fingerprint with hand-held portable equipment. These results open the way for the application of SERS technique on real scenarios where robust, light-weight, miniaturized and simple to use and cost-effective tools are required by first responders.

11.
Molecules ; 24(3)2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759729

RESUMO

Membrane distillation (MD) has recently gained considerable attention as a valid process for the production of fresh-water due to its ability to exploit low grade waste heat for operation and to ensure a nearly feed concentration-independent production of high-purity distillate. Limitations have been related to polarization phenomena negatively affecting the thermal efficiency of the process and, as a consequence, its productivity. Several theoretical models have been developed to predict the impact of the operating conditions of the process on the thermal polarization, but there is a lack of experimental validation. In this study, electrospun nanofiber membranes (ENMs) made of Poly(vinylidene fluoride) (PVDF) and doped with (1, 10-phenanthroline) ruthenium (II) Ru(phen)3 were tested at different operating conditions (i.e., temperature and velocity of the feed) in direct contact membrane distillation (DCMD). The temperature sensitive luminophore, Ru(phen)3, allowed the on-line and non-invasive mapping of the temperature at the membrane surface during the process and the experimental evaluation of the effect of the temperature and velocity of the feed on the thermal polarization.


Assuntos
Sondas Moleculares/química , Nanofibras/química , Destilação/métodos , Água Doce/química , Membranas/química , Membranas Artificiais , Polivinil/química , Rutênio/química , Temperatura
12.
Front Chem ; 6: 487, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30386771

RESUMO

C-encapsulated highly pure PtxCoy alloy nanoparticles have been synthesized by an innovative one-step in-situ laser pyrolysis. The obtained X-ray diffraction pattern and transmission electron microscopy images correspond to PtxCoy alloy nanoparticles with average diameters of 2.4 nm and well-established crystalline structure. The synthesized PtxCoy/C catalyst containing 1.5 wt% of PtxCoy nanoparticles can achieve complete CO conversion in the temperature range 125-175°C working at weight hourly space velocities (WHSV) of 30 L h-1g-1. This study shows the first example of bimetallic nanoalloys synthesized by laser pyrolysis and paves the way for a wide variety of potential applications and metal combinations.

13.
Micromachines (Basel) ; 9(2)2018 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-30393321

RESUMO

The novel concept of a microfluidic chip with an integrated three-dimensional fractal geometry with nanopores, acting as a gas transport membrane, is presented. The method of engineering the 3D fractal structure is based on a combination of anisotropic etching of silicon and corner lithography. The permeation of oxygen and carbon dioxide through the fractal membrane is measured and validated theoretically. The results show high permeation flux due to low resistance to mass transfer because of the hierarchical branched structure of the fractals, and the high number of the apertures. This approach offers an advantage of high surface to volume ratio and pores in the range of nanometers. The obtained results show that the gas permeation through the nanonozzles in the form of fractal geometry is remarkably enhanced in comparison to the commonly-used polydimethylsiloxane (PDMS) dense membrane. The developed chip is envisioned as an interesting alternative for gas-liquid contactors that require harsh conditions, such as microreactors or microdevices, for energy applications.

14.
Micromachines (Basel) ; 9(2)2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30393336

RESUMO

One of the main limitations of the technique surface-enhanced Raman scattering (SERS) for chemical detection relies on the homogeneity, reproducibility and reusability of the substrates. In this work, SERS active platforms based on 3D-fractal microstructures is developed by combining corner lithography and anisotropic wet etching of silicon, to extend the SERS-active area into 3D, with electrostatically driven Au@citrate nanoparticles (NPs) assembly, to ensure homogeneous coating of SERS active NPs over the entire microstructured platforms. Strong SERS intensities are achieved using 3D-fractal structures compared to 2D-planar structures; leading to SERS enhancement factors for R6G superior than those merely predicted by the enlarged area effect. The SERS performance of Au monolayer-over-mirror configuration is demonstrated for the label-free real-time gas phase detection of 1.2 ppmV of dimethyl methylphosphonate (DMMP), a common surrogate of G-nerve agents. Thanks to the hot spot accumulation on the corners and tips of the 3D-fractal microstructures, the main vibrational modes of DMMP are clearly identified underlying the spectral selectivity of the SERS technique. The Raman acquisition conditions for SERS detection in gas phase have to be carefully chosen to avoid photo-thermal effects on the irradiated area.

15.
Membranes (Basel) ; 8(3)2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30189665

RESUMO

This experimental study explores the potential of supported ionic liquid membranes (SILMs) based on protic imidazolium ionic liquids (ILs) and randomly nanoporous polybenzimidazole (PBI) supports for CH4/N2 separation. In particular, three classes of SILMs have been prepared by the infiltration of porous PBI membranes with different protic moieties: 1-H-3-methylimidazolium bis (trifluoromethane sulfonyl)imide; 1-H-3-vinylimidazolium bis(trifluoromethane sulfonyl)imide followed by in situ ultraviolet (UV) polymerization to poly[1-(3H-imidazolium)ethylene] bis(trifluoromethanesulfonyl)imide. The polymerization process has been monitored by Fourier transform infrared (FTIR) spectroscopy and the concentration of the protic entities in the SILMs has been evaluated by thermogravimetric analysis (TGA). Single gas permeability values of N2 and CH4 at 313 K, 333 K and 363 K were obtained from a series of experiments conducted in a batch gas permeance system. The results obtained were assessed in terms of the preferential cavity formation and favorable solvation of methane in the apolar domains of the protic ionic network. The most attractive behavior exhibited poly[1-(3H-imidazolium)ethylene]bis(trifluoromethanesulfonyl)imide polymeric ionic liquid (PIL) cross-linked with 1% divinylbenzene supported membranes, showing stable performance when increasing the upstream pressure. The CH4/N2 permselectivity value of 2.1 with CH4 permeability of 156 Barrer at 363 K suggests that the transport mechanism of the as-prepared SILMs is solubility-dominated.

16.
Environ Sci Technol ; 52(10): 5892-5901, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29660983

RESUMO

A microwave-heated adsorbent-reactor system has been used for the continuous cleaning of air streams containing n-hexane at low concentrations. Both, a single catalytic bed (PtY zeolite) and a double (adsorptive DAY zeolite + catalytic PtY zeolite) fixed-bed reactor configurations were studied under dry and humid conditions. The zeolites were selectively heated by short periodic microwave pulses that caused the desorption of n-hexane and its subsequent catalytic combustion. The double bed configuration was attractive because it allowed nearly the same performance with only half of the catalyst load. The operation was especially efficient under realistic humid gas conditions that favored more intense microwave absorption, producing a faster heating of the adsorptive and catalytic beds. Under these conditions, continuous gas cleaning could be achieved with short (3 min, 30 W) microwave heating pulses every 5 min.


Assuntos
Compostos Orgânicos Voláteis , Zeolitas , Adsorção , Catálise , Micro-Ondas
17.
ACS Appl Mater Interfaces ; 9(17): 14844-14857, 2017 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-28437079

RESUMO

Liquid-induced phase-separation micromolding (LIPSµM) has been successfully used for manufacturing hierarchical porous polybenzimidazole (HPBI) microsieves (42-46% porosity, 30-40 µm thick) with a specific pore architecture (pattern of macropores: ∼9 µm in size, perforated, dispersed in a porous matrix with a 50-100 nm pore size). Using these microsieves, proton-exchange membranes were fabricated by the infiltration of a 1H-3-vinylimidazolium bis(trifluoromethanesulfonyl)imide liquid and divinylbenzene (as a cross-linker), followed by in situ UV polymerization. Our approach relies on the separation of the ion conducting function from the structural support function. Thus, the polymeric ionic liquid (PIL) moiety plays the role of a proton conductor, whereas the HPBI microsieve ensures the mechanical resistance of the system. The influence of the porous support architecture on both proton transport performance and mechanical strength has been specifically investigated by means of comparison with straight macroporous (36% porosity) and randomly nanoporous (68% porosity) PBI counterparts. The most attractive results were obtained with the poly[1-(3H-imidazolium)ethylene]bis(trifluoromethanesulfonyl)imide PIL cross-linked with 1% divinylbenzene supported on HPBI membranes with a 21-µm-thick skin layer, achieving conductivity values up to 85 mS cm-1 at 200 °C under anhydrous conditions and in the absence of mineral acids.

18.
ACS Appl Mater Interfaces ; 8(51): 35377-35389, 2016 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-27976844

RESUMO

Polymeric ionic liquids (PILs) have triggered great interest as all solid-state flexible electrolytes because of safety and superior thermal, chemical, and electrochemical stability. It is of great importance to fabricate highly conductive electrolyte membranes capable to operate above 120 °C under anhydrous conditions and in the absence of mineral acids, without sacrificing the mechanical behavior. Herein, the diminished dimensional and mechanical stability of poly[1-(3H-imidazolium)ethylene]bis(trifluoromethanesulfonyl)imide has been improved thanks to its infiltration on a polybenzimidale (PBI) support with specific pore architecture. Our innovative solution is based on the synergic combination of an emerging class of materials and sustainable large-scale manufacturing techniques (UV polymerization and replication by microtransfer-molding). Following this approach, the PIL plays the proton conduction role, and the PBI microsieve (SPBI) mainly provides the mechanical reinforcement. Among the resulting electrolyte membranes, conductivity values above 50 mS·cm-1 at 200 °C and 10.0 MPa as tensile stress are shown by straight microchannels of poly[1-(3H-imidazolium)ethylene]bis(trifluoromethanesulfonyl)imide cross-linked with 1% of dyvinylbenzene embedded in a PBI microsieve with well-defined porosity (36%) and pore diameter (17 µm).

19.
Angew Chem Int Ed Engl ; 55(37): 11158-61, 2016 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-27404950

RESUMO

The selective oxidation of ethylene to ethylene epoxide is highly challenging as a result of competing reaction pathways leading to the deep oxidation of both ethylene and ethylene oxide. Herein we present a novel catalyst based on silver and copper oxide with an excellent response in the selective oxidation pathway towards ethylene epoxide. The catalyst is composed of different silver nanostructures dispersed on a tubular copper oxide matrix. This type of hybrid nanoarchitecture seems to facilitate the accommodation of chlorine promoters, leading to high yields at low reaction temperatures. The stability after the addition of chlorine promoters implies a substantial improvement over the industrial practice: a single pretreatment step at ambient pressure suffices in contrast with the common practice of continuously feeding organochlorinated precursors during the reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...