Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res Commun ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687198

RESUMO

Chronic lymphocytic leukemia (CLL) cell survival and growth is fueled by the induction of B-cell receptor (BCR) signaling within the tumor microenvironment (TME) driving activation of NF-κB signaling and the unfolded protein response (UPR). Malignant cells have higher basal levels of UPR posing a unique therapeutic window to combat CLL cell growth using pharmacological agents that induce accumulation of misfolded proteins. Frontline CLL therapeutics that directly target BCR signaling such as Bruton-tyrosine kinase (BTK) inhibitors (e.g., ibrutinib) have enhanced patient survival. However, resistance mechanisms wherein tumor cells bypass BTK inhibition through acquired BTK mutations, and/or activation of alternative survival mechanisms have rendered ibrutinib ineffective, imposing the need for novel therapeutics. We evaluated SpiD3, a novel spirocyclic dimer, in CLL cell lines, patient-derived CLL samples, ibrutinib-resistant CLL cells, and in the Eµ-TCL1 mouse model. Our integrated multi-omics and functional analyses revealed BCR signaling, NF-κB signaling, and endoplasmic reticulum stress among the top pathways modulated by SpiD3. This was accompanied by marked upregulation of the UPR and inhibition of global protein synthesis in CLL cell lines and patient-derived CLL cells. In ibrutinib-resistant CLL cells, SpiD3 retained its anti-leukemic effects, mirrored in reduced activation of key proliferative pathways (e.g., PRAS, ERK, MYC). Translationally, we observed reduced tumor burden in SpiD3-treated Eµ-TCL1 mice. Our findings reveal that SpiD3 exploits critical vulnerabilities in CLL cells including NF-κB signaling and the UPR, culminating in profound anti-tumor properties independent of TME stimuli.

2.
bioRxiv ; 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-37066260

RESUMO

Pyrimidine nucleotide biosynthesis is a druggable metabolic dependency of cancer cells, and chemotherapy agents targeting pyrimidine metabolism are the backbone of treatment for many cancers. Dihydroorotate dehydrogenase (DHODH) is an essential enzyme in the de novo pyrimidine biosynthesis pathway that can be targeted by clinically approved inhibitors. However, despite robust preclinical anticancer efficacy, DHODH inhibitors have shown limited single-agent activity in phase 1 and 2 clinical trials. Therefore, novel combination therapy strategies are necessary to realize the potential of these drugs. To search for therapeutic vulnerabilities induced by DHODH inhibition, we examined gene expression changes in cancer cells treated with the potent and selective DHODH inhibitor brequinar (BQ). This revealed that BQ treatment causes upregulation of antigen presentation pathway genes and cell surface MHC class I expression. Mechanistic studies showed that this effect is 1) strictly dependent on pyrimidine nucleotide depletion, 2) independent of canonical antigen presentation pathway transcriptional regulators, and 3) mediated by RNA polymerase II elongation control by positive transcription elongation factor B (P-TEFb). Furthermore, BQ showed impressive single-agent efficacy in the immunocompetent B16F10 melanoma model, and combination treatment with BQ and dual immune checkpoint blockade (anti-CTLA-4 plus anti-PD-1) significantly prolonged mouse survival compared to either therapy alone. Our results have important implications for the clinical development of DHODH inhibitors and provide a rationale for combination therapy with BQ and immune checkpoint blockade.

3.
RSC Med Chem ; 14(5): 921-933, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37252106

RESUMO

As an adaptation for survival during infection, Mycobacterium tuberculosis becomes dormant, reducing its metabolism and growth. Two types of citrate synthases have been identified in Mycobacterium tuberculosis, GltA2 and CitA. Previous work shows that overexpression of CitA, the secondary citrate synthase, stimulates the growth of Mycobacterium tuberculosis under hypoxic conditions without showing accumulation of triacylglycerols and makes mycobacteria more sensitive to antibiotics, suggesting that CitA may play a role as a metabolic switch during infection and may be an interesting TB drug target. To assess the druggability and possible mechanisms of targeting CitA with small-molecule compounds, the CitA crystal structure was solved to 2.1 Å by X-ray crystallography. The solved structure shows that CitA lacks an NADH binding site that would afford allosteric regulation, which is atypical of most citrate synthases. However, a pyruvate molecule is observed within the analogous domain, suggesting pyruvate may instead be the allosteric regulator for CitA. The R149 and R153 residues forming the charged portion of the pyruvate binding pocket were mutated to glutamate and methionine, respectively, to assess the effect of mutations on activity. Protein thermal shift assay shows thermal stabilization of CitA in the presence of pyruvate compared to the two CitA variants designed to decrease pyruvate affinity. Solved crystal structures of both variants show no significant structural changes. However, the catalytic efficiency of the R153M variant increases by 2.6-fold. Additionally, we show that covalent modification of C143 of CitA by Ebselen completely arrests enzyme activity. Similar inhibition is observed using two spirocyclic Michael acceptor containing compounds, which inhibit CitA with ICapp50 values of 6.6 and 10.9 µM. A crystal structure of CitA modified by Ebselen was solved, but significant structural changes were lacking. Considering that covalent modification of C143 inactivates CitA and the proximity of C143 to the pyruvate binding site, this suggests that structural and/or chemical changes in this sub-domain are responsible for regulating CitA enzymatic activity.

4.
Front Pharmacol ; 13: 863762, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35645825

RESUMO

Cyclin-dependent kinase 5 (Cdk5) is a crucial regulator of neuronal signal transduction. Cdk5 activity is implicated in various neuropsychiatric and neurodegenerative conditions such as stress, anxiety, depression, addiction, Alzheimer's disease, and Parkinson's disease. While constitutive Cdk5 knockout is perinatally lethal, conditional knockout mice display resilience to stress-induction, enhanced cognition, neuroprotection from stroke and head trauma, and ameliorated neurodegeneration. Thus, Cdk5 represents a prime target for treatment in a spectrum of neurological and neuropsychiatric conditions. While intracranial infusions or treatment of acutely dissected brain tissue with compounds that inhibit Cdk5 have allowed the study of kinase function and corroborated conditional knockout findings, potent brain-penetrant systemically deliverable Cdk5 inhibitors are extremely limited, and no Cdk5 inhibitor has been approved to treat any neuropsychiatric or degenerative diseases to date. Here, we screened aminopyrazole-based analogs as potential Cdk5 inhibitors and identified a novel analog, 25-106, as a uniquely brain-penetrant anti-Cdk5 drug. We characterize the pharmacokinetic and dynamic responses of 25-106 in mice and functionally validate the effects of Cdk5 inhibition on open field and tail-suspension behaviors. Altogether, 25-106 represents a promising preclinical Cdk5 inhibitor that can be systemically administered with significant potential as a neurological/neuropsychiatric therapeutic.

5.
Bioorg Med Chem Lett ; 65: 128713, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35367592

RESUMO

The IKK-NFκB complex is a key signaling node that facilitates activation of gene expression in response to extracellular signals. The kinase IKKß and the transcription factor RELA have been targeted by covalent modifiers that bind to surface exposed cysteine residues. A common feature in well characterized covalent modifiers of RELA and IKKß is the Michael acceptor containing α-methylene-γ-butyrolactone functionality. Through synthesis and evaluation of a focused set of α-methylene-γ-butyrolactone containing spirocyclic dimers (SpiDs) we identified SpiD3 as an anticancer agent with low nanomolar potency. Using cell-free and cell-based studies we show that SpiD3 is a covalent modifier that generates stable RELA containing high molecular weight complexes. SpiD3 inhibits TNFα-induced IκBα phosphorylation resulting in the blockade of RELA nuclear translocation. SpiD3 induces apoptosis, inhibits colony formation and migration of cancer cells. The NCI-60 cell line screen revealed that SpiD3 potently inhibits growth of leukemia cell lines, making it a suitable pre-therapeutic lead for hematological malignancies.


Assuntos
Antineoplásicos , Isatina , 4-Butirolactona/análogos & derivados , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Quinase I-kappa B/metabolismo , Isatina/farmacologia , NF-kappa B/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo
6.
J Biol Chem ; 298(5): 101890, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35378132

RESUMO

The unfolded protein response (UPR) is an adaptation mechanism activated to resolve transient accumulation of unfolded/misfolded proteins in the endoplasmic reticulum. Failure to resolve the transient accumulation of such proteins results in UPR-mediated programmed cell death. Loss of tumor suppressor gene or oncogene addiction in cancer cells can result in sustained higher basal UPR levels; however, it is not clear if these higher basal UPR levels in cancer cells can be exploited as a therapeutic strategy. We hypothesized that covalent modification of surface-exposed cysteine (SEC) residues could simulate unfolded/misfolded proteins to activate the UPR, and that higher basal UPR levels in cancer cells would provide the necessary therapeutic window. To test this hypothesis, here we synthesized analogs that can covalently modify multiple SEC residues and evaluated them as UPR activators. We identified a spirocyclic dimer, SpiD7, and evaluated its effects on UPR activation signals, that is, XBP1 splicing, phosphorylation of eIF2α, and a decrease in ATF 6 levels, in normal and cancer cells, which were further confirmed by RNA-Seq analyses. We found that SpiD7 selectively induced caspase-mediated apoptosis in cancer cells, whereas normal cells exhibited robust XBP1 splicing, indicating adaptation to stress. Furthermore, SpiD7 inhibited the growth of high-grade serous carcinoma cell lines ~3-15-fold more potently than immortalized fallopian tube epithelial (paired normal control) cells and reduced clonogenic growth of high-grade serous carcinoma cell lines. Our results suggest that induction of the UPR by covalent modification of SEC residues represents a cancer cell vulnerability and can be exploited to discover novel therapeutics.


Assuntos
Apoptose , Carcinoma , Resposta a Proteínas não Dobradas , Carcinoma/tratamento farmacológico , Carcinoma/metabolismo , Linhagem Celular Tumoral , Descoberta de Drogas , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos
7.
Proc Natl Acad Sci U S A ; 119(18): e2115071119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35476515

RESUMO

Activation of inhibitor of nuclear factor NF-κB kinase subunit-ß (IKKß), characterized by phosphorylation of activation loop serine residues 177 and 181, has been implicated in the early onset of cancer. On the other hand, tissue-specific IKKß knockout in Kras mutation-driven mouse models stalled the disease in the precancerous stage. In this study, we used cell line models, tumor growth studies, and patient samples to assess the role of IKKß and its activation in cancer. We also conducted a hit-to-lead optimization study that led to the identification of 39-100 as a selective mitogen-activated protein kinase kinase kinase (MAP3K) 1 inhibitor. We show that IKKß is not required for growth of Kras mutant pancreatic cancer (PC) cells but is critical for PC tumor growth in mice. We also observed elevated basal levels of activated IKKß in PC cell lines, PC patient-derived tumors, and liver metastases, implicating it in disease onset and progression. Optimization of an ATP noncompetitive IKKß inhibitor resulted in the identification of 39-100, an orally bioavailable inhibitor with improved potency and pharmacokinetic properties. The compound 39-100 did not inhibit IKKß but inhibited the IKKß kinase MAP3K1 with low-micromolar potency. MAP3K1-mediated IKKß phosphorylation was inhibited by 39-100, thus we termed it IKKß activation modulator (IKAM) 1. In PC models, IKAM-1 reduced activated IKKß levels, inhibited tumor growth, and reduced metastasis. Our findings suggests that MAP3K1-mediated IKKß activation contributes to KRAS mutation-associated PC growth and IKAM-1 is a viable pretherapeutic lead that targets this pathway.


Assuntos
MAP Quinase Quinase Quinase 1 , Neoplasias Pancreáticas , Humanos , Quinase I-kappa B/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas Serina-Treonina Quinases , Neoplasias Pancreáticas
8.
RSC Chem Biol ; 3(1): 32-36, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35128406

RESUMO

Tumor necrosis factor (TNF) α-induced nuclear translocation of the NF-κB subunit RELA has been implicated in several pathological conditions. Here we report the discovery of a spirocyclic dimer (SpiD7) that covalently modifies RELA to inhibit TNFα-induced nuclear translocation. This is a previously unexplored strategy to inhibit TNFα-induced NF-κB activation.

10.
Cancers (Basel) ; 13(21)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34771669

RESUMO

The cyclin-dependent kinase (CDK) family of proteins play prominent roles in transcription, mRNA processing, and cell cycle regulation, making them attractive cancer targets. Palbociclib was the first FDA-approved CDK inhibitor that non-selectively targets the ATP binding sites of CDK4 and CDK6. In this review, we will briefly inventory CDK inhibitors that are either part of over 30 active clinical trials or recruiting patients. The lack of selectivity among CDKs and dose-limiting toxicities are major challenges associated with the development of CDK inhibitors. Proteolysis Targeting Chimeras (PROTACs) and Molecular Glues have emerged as alternative therapeutic modalities to target proteins. PROTACs and Molecular glues utilize the cellular protein degradation machinery to destroy the target protein. PROTACs are heterobifunctional molecules that form a ternary complex with the target protein and E3-ligase by making two distinct small molecule-protein interactions. On the other hand, Molecular glues function by converting the target protein into a "neo-substrate" for an E3 ligase. Unlike small molecule inhibitors, preclinical studies with CDK targeted PROTACs have exhibited improved CDK selectivity. Moreover, the efficacy of PROTACs and molecular glues are not tied to the dose of these molecular entities but to the formation of the ternary complex. Here, we provide an overview of PROTACs and molecular glues that modulate CDK function as emerging therapeutic modalities.

11.
Eur J Med Chem ; 222: 113579, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34098465

RESUMO

Genetic models validated Inhibitor of nuclear factor (NF) kappa B kinase beta (IKKß) as a therapeutic target for KRAS mutation associated pancreatic cancer. Phosphorylation of the activation loop serine residues (S177, S181) in IKKß is a key event that drives tumor necrosis factor (TNF) α induced NF-κB mediated gene expression. Here we conducted structure activity relationship (SAR) study to improve potency and oral bioavailability of a quinoxaline analog 13-197 that was previously reported as a NFκB inhibitor for pancreatic cancer therapy. The SAR led to the identification of a novel quinoxaline urea analog 84 that reduced the levels of p-IKKß in dose- and time-dependent studies. When compared to 13-197, analog 84 was ∼2.5-fold more potent in TNFα-induced NFκB inhibition and ∼4-fold more potent in inhibiting pancreatic cancer cell growth. Analog 84 exhibited ∼4.3-fold greater exposure (AUC0-∞) resulting in ∼5.7-fold increase in oral bioavailability (%F) when compared to 13-197. Importantly, oral administration of 84 by itself and in combination of gemcitabine reduced p-IKKß levels and inhibited pancreatic tumor growth in a xenograft model.


Assuntos
Antineoplásicos/farmacologia , Quinase I-kappa B/antagonistas & inibidores , Neoplasias Pancreáticas/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Quinoxalinas/farmacologia , Ureia/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Quinase I-kappa B/metabolismo , Camundongos , Estrutura Molecular , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Quinoxalinas/síntese química , Quinoxalinas/química , Relação Estrutura-Atividade , Ureia/análogos & derivados , Ureia/química
12.
Bioorg Med Chem Lett ; 43: 128061, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33895280

RESUMO

Cyclin-dependent kinase 9 (CDK9) is a member of the cyclin-dependent kinase (CDK) family which is involved in transcriptional regulation of several genes, including the oncogene Myc, and is a validated target for pancreatic cancer. Here we report the development of an aminopyrazole based proteolysis targeting chimera (PROTAC 2) that selectively degrades CDK9 (DC50 = 158 ± 6 nM). Mass spectrometry-based kinome profiling shows PROTAC 2 selectively degrades CDK9 in MiaPaCa2 cells and sensitizes them to Venetoclax mediated growth inhibition.


Assuntos
Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Neoplasias Pancreáticas/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Proliferação de Células/efeitos dos fármacos , Quinase 9 Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Inibidores de Proteínas Quinases/química , Proteólise/efeitos dos fármacos , Pirazóis/química , Relação Estrutura-Atividade , Sulfonamidas/farmacologia
13.
BMC Mol Cell Biol ; 20(1): 30, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31387520

RESUMO

BACKGROUND: Several human cancers, especially cervical cancer are caused by the infection of high risk strains of human papillomaviruses (HPV), notably HPV16. It is implicated that the oncoprotein E6 expressed from HPV, is inhibiting the apoptotic pathway by binding to adaptor molecule FADD (Fas-associated death domain). Inhibiting E6 interactions with FADD could provide a promising treatment for cervical cancer. There are few small molecules reported to inhibit such interactions. However, the FADD binding site information on the HPV E6 is not currently available. This binding site information may provide an opportunity to design new small molecule inhibitors to treat E6 mediated cancers. In this study we report the possible binding pocket on HPV16 E6 oncoprotein by using activity data of reported inhibitors through a stepwise molecular modeling approach. RESULTS: Blind docking and removing duplicates followed by visual inspection to determine ligand-receptor interactions provided 68 possible binding sites on the E6 protein. Individual docking of all known inhibitors lead to the identification of 28 pockets having some kind of correlation with their activity data. It was also observed that several of these pockets overlapped with each other, having some amino acids in common. Amino acids Leu50 and Cys51 were identified as key E6 residues for high affinity ligand binding which are seen in most of these pockets. In most cases, ligands demonstrated a hydrogen bond interaction with Cys51. Ala61, Arg131 and Gln107 were also frequently observed showing interactions among these pockets. A few amino acids unique to each ligand were also identified representing additional interactions at the receptor site. CONCLUSIONS: After determining receptor-ligand interactions between E6 oncoprotein and the six known inhibitors, the amino acids Cys51, Leu50, Arg102, Arg131, Leu67, Val62, and Gln107 were identified to have importance in E6 inhibition. It was generally observed that Leu50 and Cys51 are necessary for high binding affinity with Cys51 being essential for hydrogen bonding. This study identified a potential binding pocket for the E6 inhibitors. Identification of the ligand binding pocket helps to design novel inhibitors of HPV16 E6 oncoprotein as a promising treatment for cervical cancer.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Proteínas Oncogênicas Virais/metabolismo , Proteínas Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Aminoácidos/metabolismo , Sítios de Ligação , Flavonóis/química , Flavonóis/farmacologia , Concentração Inibidora 50 , Ligantes , Simulação de Acoplamento Molecular , Proteínas Oncogênicas/química , Proteínas Oncogênicas Virais/química , Proteínas Repressoras/química
14.
Future Sci OA ; 4(9): FSO338, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30416746

RESUMO

AIDS caused by the infection of HIV is a prevalent problem today. Rapid development of drug resistance to existing drug classes has called for the discovery of new targets. Within the three major enzymes (i.e., HIV-1 protease, HIV-1 reverse transcriptase and HIV-1 integrase [IN]) of the viral replication cycle, HIV-1 IN has been of particular interest due to the absence of human cellular homolog. HIV-1 IN catalyzes the integration of viral genetic material with the host genome, a key step in the viral replication process. Several novel classes of HIV IN inhibitors have been explored by targeting different sites on the enzyme. This review strives to provide readers with updates on the recent developments of HIV-1 IN inhibitors.

15.
Neuropeptides ; 57: 15-20, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26707235

RESUMO

Neurotensin (NT) and its analog neuromedin N (NN) are formed by the processing of a common precursor in mammalian brain tissue and intestines. The biological effects mediated by NT and NN (e.g. analgesia, hypothermia) result from the interaction with G protein-coupled receptors. The goal of this study consisted of the synthesis and radiolabeling of NN, as well as the determination of the binding characteristics of [(3)H]NN and G protein activation by the cold ligand. In homologous displacement studies a weak affinity was determined for NN, with IC50 values of 454nM in rat brain and 425nM in rat spinal cord membranes. In saturation binding experiments the Kd value proved to be 264.8±30.18nM, while the Bmax value corresponded to 3.8±0.2pmol/mg protein in rat brain membranes. The specific binding of [(3)H]NN was saturable, interacting with a single set of homogenous binding sites. In sodium sensitivity experiments, a very weak inhibitory effect of Na(+) ions was observed on the binding of [(3)H]NN, resulting in an IC50 of 150.6mM. In [(35)S]GTPγS binding experiments the Emax value was 112.3±1.4% in rat brain and 112.9±2.4% in rat spinal cord membranes and EC50 values of 0.7nM and 0.79nM were determined, respectively. NN showed moderate agonist activities in stimulating G proteins. The stimulatory effect of NN could be maximally inhibited via use of the NTS2 receptor antagonist levocabastine, but not by the opioid receptor specific antagonist naloxone, nor by the NTS1 antagonist SR48692. These observations allow us to conclude that [(3)H]NN labels NTS2 receptors in rat brain membranes.


Assuntos
Encéfalo/metabolismo , Neurotensina/síntese química , Neurotensina/farmacocinética , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/farmacocinética , Receptores de Neurotensina/metabolismo , Medula Espinal/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Concentração Inibidora 50 , Ligantes , Masculino , Ligação Proteica , Ensaio Radioligante , Ratos , Ratos Wistar , Medula Espinal/diagnóstico por imagem , Radioisótopos de Enxofre/farmacocinética , Trítio/farmacocinética
16.
ACS Chem Neurosci ; 6(3): 456-63, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25496417

RESUMO

Herein we report the radiolabeling and pharmacological investigation of a novel radioligand, the N-cyclobutylmethyl substituted diphenethylamine [(3)H]HS665, designed to bind selectively to the kappa opioid peptide (KOP) receptor, a target of therapeutic interest for the treatment of a variety of human disorders (i.e., pain, affective disorders, drug addiction, and psychotic disorders). HS665 was prepared in tritium-labeled form by a dehalotritiated method resulting in a specific activity of 30.65 Ci/mmol. Radioligand binding studies were performed to establish binding properties of [(3)H]HS665 to the recombinant human KOP receptor in membranes from Chinese hamster ovary cells stably expressing human KOP receptors (CHOhKOP) and to the native neuronal KOP receptor in guinea pig brain membranes. Binding of [(3)H]HS665 was specific and saturable in both tissue preparations. A single population of high affinity binding sites was labeled by [(3)H]HS665 in membranes from CHOhKOP cells and guinea pig brain with similar equilibrium dissociation constants, Kd, 0.45 and 0.64 nM, respectively. Average receptor density of [(3)H]HS665 recognition sites were 5564 and 154 fmol/mg protein in CHOhKOP cells and guinea pig brain, respectively. This study shows that the new radioligand distinguishes and labels KOP receptors specifically in neuronal and cellular systems expressing KOP receptors, making this molecule a valuable tool in probing structural and functional mechanisms governing ligand-KOP receptor interactions in both a recombinant and native in vitro setting.


Assuntos
Analgésicos Opioides , Fenetilaminas , Receptores Opioides kappa/metabolismo , Analgésicos/farmacocinética , Analgésicos Opioides/síntese química , Analgésicos Opioides/química , Analgésicos Opioides/farmacologia , Animais , Benzenoacetamidas/farmacocinética , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Células CHO , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Cobaias , Humanos , Naloxona/análogos & derivados , Naloxona/farmacologia , Fenetilaminas/síntese química , Fenetilaminas/química , Fenetilaminas/farmacologia , Ligação Proteica/efeitos dos fármacos , Pirrolidinas/farmacocinética , Ensaio Radioligante , Receptores Opioides kappa/genética , Fatores de Tempo , Transfecção , Trítio/farmacocinética
17.
Folia Neuropathol ; 52(4): 383-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25574743

RESUMO

In the present paper, we report the synthesis, radiolabeling and comprehensive pharmacological evaluation of a C-terminally truncated tachykinin derivative, 3H-KFFGLM-NH2. The C-terminal fragments of endogenous tachykinins are pharmacophores responsible for interaction with the tachykinin receptors NK1, NK2 and NK3. The N-terminal fragments are responsible for modulation of receptor selectivity and interactions with other receptor systems. To evaluate and separate the function of an NK-pharmacophore from the activity of its parent neurokinin, KFFGLM-NH2 was synthesized in both tritiated and unlabeled forms. It has been proposed that the obtained NK-binding profiles of specific reference ligands and KFFGLM-NH2 differentiate monomeric and dimeric forms of NK receptors. We hypothesize that dimers of NK receptors could be specific receptor(s) for C-terminal fragments of all neurokinins as well as their C-terminal fragments, including H-KFFGLM-NH2. Dissociation of dimers into monomers opens access to additional allosteric binding sites. Fully elongated undecapeptide substance P interacts with both the "tachykinin pocket" and the "allosteric pocket" on the monomeric NK1 receptor, resulting in high and selective activation. However, C-terminal hexapeptide fragment analogues, recognizing only the "tachykinin pocket", may have less specific interactions with all tachykinin receptors in both monomeric and dimeric forms.


Assuntos
Peptídeos/metabolismo , Substância P/farmacologia , Taquicininas/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Feminino , Masculino , Neurocinina A/metabolismo , Peptídeos/química , Ratos Wistar , Receptores da Neurocinina-1/metabolismo
18.
Curr Pharm Des ; 19(42): 7461-72, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23448471

RESUMO

Tritiated opioid ligands are essential tools for the identification of opioid receptors. This review deals with the syntheses of tritiated opioid peptide derivatives, including enkephalins, dynorphins, dermorphins, deltorphins and endomorphins, and also discusses tritium-labeled nonpeptide opioids. It additionally focuses on the relevance of tritium-labeled opioid compounds as research tools for investigating opioid receptor pharmacology. Agonists and antagonists are used for the characterization of new opioid ligands by means of radioreceptor binding assays. Further topics covered in this review are the distribution of the endogenous peptides in the central nervous system and peripheral tissues, and degradation studies of opioids in brain membrane preparations and the blood.


Assuntos
Ensaio Radioligante , Receptores Opioides/metabolismo , Ligantes
19.
Eur J Pharmacol ; 702(1-3): 93-102, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23376157

RESUMO

The hexapeptide angiotensin IV (Ang IV) induces diverse biological effects such as memory enhancement and protection against ischemic stroke. Studies on the mechanism of Ang IV however are hampered by its instability and its lack of selectivity. The high-affinity binding site for Ang IV is the insulin-regulated aminopeptidase (IRAP, EC 3.4.11.3), but Ang IV also acts as a weak agonist for the Ang II-receptor (AT1), implying the need for stable and highly selective Ang IV-analogues. Here we present the screening of novel Ang IV-analogues, selected on basis of high affinity for IRAP, high selectivity (compared to aminopeptidase N and the AT1 receptor) and resistance against proteases. The selected compound IVDE77 possesses a number of advantages compared to Ang IV: (i) it has a 40 times higher affinity for IRAP (Ki 1.71 nM), (ii) it does not activate the AT1 receptor, (iii) it is easily radiolabeled with tritium and (iv) it is resistant to proteolysis, even in human plasma. In addition, pre-treatment of intact CHO-K1 cells with IVDE77 led to a virtually complete inhibition of subsequent intracellular accumulation of [(3)H]IVDE77-IRAP complexes. IVDE77 thus represents the first Ang IV-analogue able to abolish IRAP-availability completely at the cell surface in vitro. In summary, IVDE77 is a useful tool for the detection of IRAP under physiological conditions, and may contribute to elucidating the mechanism of Ang IV to ascertain which functions are IRAP-dependent.


Assuntos
Angiotensina II/análogos & derivados , Azepinas/farmacologia , Cistinil Aminopeptidase/metabolismo , Oligopeptídeos/farmacologia , Angiotensina II/farmacologia , Animais , Ligação Competitiva , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Ligantes
20.
J Pharm Biomed Anal ; 70: 32-9, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22677655

RESUMO

Seven diastereomer pairs of tetrapeptide analogues (TP) of endomorphin-1 and -2 were synthesized. A stereoselective capillary electrophoretic method was developed for controlling stereoisomeric ratio or purity. The isoelectric points of the tetrapeptides were between 8.3 and 8.9 as predicted and measured. A few of the analytes could be resolved without selectors due to the difference in their mobility. Neutral and anionic cyclodextrins (CDs) were applied in order to improve resolution. Stability constants as well as the mobilities of complexes were determined. Contributions of differences in the mobilities of free analytes and in the mobilities and stabilities of their complexes formed by CDs were equally important in the efficient resolution and migration order of diastereomers. As a result of the optimization of the pH of buffers and the concentration of the CD derivatives each diastereomer pair was resolved at baseline at least or better.


Assuntos
Ciclodextrinas/química , Eletroforese Capilar , Oligopeptídeos/análise , Soluções Tampão , Concentração de Íons de Hidrogênio , Ponto Isoelétrico , Modelos Químicos , Oligopeptídeos/síntese química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...