Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Plants ; 10(5): 760-770, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609675

RESUMO

Perennial plants create productive and biodiverse hotspots, known as fertile islands, beneath their canopies. These hotspots largely determine the structure and functioning of drylands worldwide. Despite their ubiquity, the factors controlling fertile islands under conditions of contrasting grazing by livestock, the most prevalent land use in drylands, remain virtually unknown. Here we evaluated the relative importance of grazing pressure and herbivore type, climate and plant functional traits on 24 soil physical and chemical attributes that represent proxies of key ecosystem services related to decomposition, soil fertility, and soil and water conservation. To do this, we conducted a standardized global survey of 288 plots at 88 sites in 25 countries worldwide. We show that aridity and plant traits are the major factors associated with the magnitude of plant effects on fertile islands in grazed drylands worldwide. Grazing pressure had little influence on the capacity of plants to support fertile islands. Taller and wider shrubs and grasses supported stronger island effects. Stable and functional soils tended to be linked to species-rich sites with taller plants. Together, our findings dispel the notion that grazing pressure or herbivore type are linked to the formation or intensification of fertile islands in drylands. Rather, our study suggests that changes in aridity, and processes that alter island identity and therefore plant traits, will have marked effects on how perennial plants support and maintain the functioning of drylands in a more arid and grazed world.


Assuntos
Herbivoria , Solo , Solo/química , Plantas , Ecossistema , Clima Desértico , Animais
3.
Ecol Lett ; 25(7): 1725-1737, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35559594

RESUMO

Ecological restoration projects often have variable and unpredictable outcomes, and these can limit the overall impact on biodiversity. Previous syntheses have investigated restoration effectiveness by comparing average restored conditions to average conditions in unrestored or reference systems. Here, we provide the first quantification of the extent to which restoration affects both the mean and variability of biodiversity outcomes, through a global meta-analysis of 83 terrestrial restoration studies. We found that, relative to unrestored (degraded) sites, restoration actions increased biodiversity by an average of 20%, while decreasing the variability of biodiversity (quantified by the coefficient of variation) by an average of 14%. As restorations aged, mean biodiversity increased and variability decreased relative to unrestored sites. However, restoration sites remained, on average, 13% below the biodiversity of reference (target) ecosystems, and were characterised by higher (20%) variability. The lower mean and higher variability in biodiversity at restored sites relative to reference sites remained consistent over time, suggesting that sources of variation (e.g. prior land use, restoration practices) have an enduring influence on restoration outcomes. Our results point to the need for new research confronting the causes of variability in restoration outcomes, and close variability and biodiversity gaps between restored and reference conditions.


Assuntos
Biodiversidade , Ecossistema , Conservação dos Recursos Naturais
4.
Ecol Evol ; 11(23): 16434-16445, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34938447

RESUMO

Trait and functional trait approaches have revolutionized ecology improving our understanding of community assembly, species coexistence, and biodiversity loss. Focusing on traits promotes comparability across spatial and organizational scales, but terms must be used consistently. While several papers have offered definitions, it remains unclear how ecologists operationalize "trait" and "functional trait" terms. Here, we evaluate how researchers and the published literatures use these terms and explore differences among subdisciplines and study systems (taxa and biome). By conducting both a survey and a literature review, we test the hypothesis that ecologists' working definition of "trait" is adapted or altered when confronting the realities of collecting, analyzing and presenting data. From 486 survey responses and 712 reviewed papers, we identified inconsistencies in the understanding and use of terminology among researchers, but also limited inclusion of definitions within the published literature. Discrepancies were not explained by subdiscipline, system of study, or respondent characteristics, suggesting there could be an inconsistent understanding even among those working in related topics. Consistencies among survey responses included the use of morphological, phonological, and physiological traits. Previous studies have called for unification of terminology; yet, our study shows that proposed definitions are not consistently used or accepted. Sources of disagreement include trait heritability, defining and interpreting function, and dealing with organisms in which individuals are not clearly recognizable. We discuss and offer guidelines for overcoming these disagreements. The diversity of life on Earth means traits can represent different features that can be measured and reported in different ways, and thus, narrow definitions that work for one system will fail in others. We recommend ecologists embrace the breadth of biodiversity using a simplified definition of "trait" more consistent with its common use. Trait-based approaches will be most powerful if we accept that traits are at least as diverse as trait ecologists.

5.
Ann Bot ; 128(4): 407-418, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-33714989

RESUMO

BACKGROUND AND AIMS: In tundra systems, soil-borne lichens are often the dominant groundcover organisms, and act to buffer microclimate extremes within or at the surface of the soil. However, shrubs are currently expanding across tundra systems, potentially causing major shifts in the microclimate landscape. METHODS: Here, we compared soil temperature and moisture underneath the dwarf birch Betula nana and seven abundant lichen species in sub-alpine Norway. We also examined mixtures of lichens and dwarf birch - an intermediate phase of shrubification - and measured several functional traits relating to microclimate. KEY RESULTS: We found that all lichen species strongly buffered the daily temperature range, on average reducing maximum temperatures by 6.9 °C (± 0.7 s.d.) and increasing minimum temperatures by 1.0 °C (± 0.2 s.d.) during summer. The dwarf birch had a much weaker effect (maximum reduced by 2.4 ±â€…5.0 °C and minimum raised by 0.2 ± 0.9 °C). In species mixtures, the lichen effect predominated, affecting temperature extremes by more than would be expected from their abundance. Lichens also tended to reduce soil moisture, which could be explained by their ability to intercept rainfall. Our trait measurements under laboratory conditions suggest that, on average, lichens can completely absorb a 4.09 mm (± 1.81 s.d.) rainfall event, which might be an underappreciated part of lichen-vascular plant competition in areas where summer rainfall events are small. CONCLUSIONS: In the context of shrubification across tundra systems, our findings suggest that lichens will continue to have a large effect on microclimate until they are fully excluded, at which point microclimate extremes will increase greatly.


Assuntos
Betula , Líquens , Microclima , Solo , Tundra
6.
MycoKeys ; 53: 73-91, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31205446

RESUMO

The detection and identification of species of fungi in the environment using molecular methods heavily depends on reliable reference sequence databases. However, these databases are largely incomplete in terms of taxon coverage, and a significant effort is required from herbaria and living fungal collections for the mass-barcoding of well-identified and well-curated fungal specimens or strains. Here, a PacBio amplicon sequencing approach is applied to recent lichen herbarium specimens for the sequencing of the fungal ITS barcode, allowing a higher throughput sample processing than Sanger sequencing, which often required the use of cloning. Out of 96 multiplexed samples, a full-length ITS sequence of the target lichenised fungal species was recovered for 85 specimens. In addition, sequences obtained for co-amplified fungi gave an interesting insight into the diversity of endolichenic fungi. Challenges encountered at both the laboratory and bioinformatic stages are discussed, and cost and quality are compared with Sanger sequencing. With increasing data output and reducing sequencing cost, PacBio amplicon sequencing is seen as a promising approach for the generation of reference sequences for lichenised fungi as well as the characterisation of lichen-associated fungal communities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...