Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rice (N Y) ; 11(1): 40, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30006850

RESUMO

BACKGROUND: Rice, a major food crop of the world, endures many major biotic stresses like bacterial blight (BB), fungal blast (BL) and the insect Asian rice gall midge (GM) that cause significant yield losses. Progress in tagging, mapping and cloning of several resistance (R) genes against aforesaid stresses has led to marker assisted multigene introgression into elite cultivars for multiple and durable resistance. However, no detailed study has been made on possible interactions among these genes when expressed simultaneously under combined stresses. RESULTS: Our studies monitored expression profiles of 14 defense related genes in 11 rice breeding lines derived from an elite cultivar with different combination of R genes against BB, BL and GM under single and multiple challenge. Four of the genes found implicated earlier under combined GM and BB stress were confirmed to be induced (≥ 2 fold) in stem tissue following GM infestation; while one of these, cytochrome P450 family protein, was also induced in leaf in plants challenged by either BB or BL but not together. Three of the genes highlighted earlier in plants challenged by both BB and BL were also found induced in stem under GM challenge. Pi54 the target R gene against BL was also found induced when challenged by GM. Though expression of some genes was noted to be inhibited under combined pest challenge, such effects did not result in compromise in resistance against any of the target pests. CONCLUSION: While R genes generally tended to respond to specific pest challenge, several of the downstream defense genes responded to multiple pest challenge either single, sequential or simultaneous, without any distinct antagonism in expression of resistance to the target pests in two of the pyramided lines RPNF05 and RPNF08.

2.
Front Plant Sci ; 8: 453, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28439277

RESUMO

Eukaryotic translational initiation factor 4A belong to family of helicases, involved in multifunctional activities during stress and non-stress conditions. The eIF4A gene was isolated and cloned from semi-arid cereal crop of Pennisetum glaucum. In present study, the PgeIF4A gene was expressed under the regulation of stress inducible Arabidopsis rd29A promoter in groundnut (cv JL-24) with bar as a selectable marker. The de-embryonated cotyledons were infected with Agrobacterium tumefaciens (LBA4404) carrying rd29A:PgeIF4A construct and generated high frequency of multiple shoots in phosphinothricin medium. Twenty- four T0 plants showed integration of both nos-bar and rd29A-PgeIF4A gene cassettes in genome with expected amplification products of 429 and 654 bps, respectively. Transgene copy number integration was observed in five T0 transgenic plants through Southern blot analysis. Predicted Mendelian ratio of segregation (3:1) was noted in transgenic plants at T1 generation. The T2 homozygous lines (L1-5, L8-2, and L16-2) expressing PgeIF4A gene were exhibited superior growth performance with respect to phenotypic parameters like shoot length, tap root length, and lateral root formation under simulated drought and salinity stresses compared to the wild type. In addition, the chlorophyll retention was found to be higher in these plants compared to the control plants. The quantitative real time-PCR results confirmed higher expression of PgeIF4A gene in L1-5, L8-3, and L16-2 plants imposed with drought/salt stress. Further, the salt stress tolerance was associated with increase in oxidative stress markers, such as superoxide dismutase accumulation, reactive oxygen species scavenging, and membrane stability in transgenic plants. Taken together our results confirmed that the PgeIF4A gene expressing transgenic groundnut plants exhibited better adaptation to stress conditions.

3.
Gene ; 505(2): 309-17, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22688121

RESUMO

Superoxide dismutases (SODs) form the foremost line of defense against ROS in aerobes. Pennisetum glaucum cDNA library is constructed to isolate superoxide dismutase cDNA clone (PgCuZnSOD) of 798 bp comprising 5'UTR (111 bp), an ORF (459 bp) and 3'UTR (228 bp). Deduced protein of 152 amino acids (16.7 kDa) with an estimated isoelectric point of 5.76 shared highest homology to cytoplasmic CuZnSODs from monocots i.e., maize, rice. Predicted 3D model reveals a conserved eight-stranded ß-barrel with active site held between barrel and two surface loops. Purified recombinant protein is relatively thermo-stable with maximal activity at pH 7.6 and shows inhibition with H(2)O(2) (4.3 mM) but not with azide (10 mM). In Pennisetum seedlings, abiotic stress induced PgCuZnSOD transcript up-regulation directly correlates to high protein and activity induction. Overexpression of PgCuZnSOD confers comparatively enhanced tolerance to methyl viologen (MV) induced oxidative stress in bacteria. Results imply that PgCuZnSOD plays a functional role in conferring oxidative stress tolerance to prokaryotic system and may hold significant potential to impart oxidative stress tolerance in higher plants through transgenic approach.


Assuntos
Adaptação Fisiológica/fisiologia , Estresse Oxidativo/fisiologia , Pennisetum/enzimologia , Superóxido Dismutase/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Sequência de Aminoácidos , Sequência de Bases , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/fisiologia , Peróxido de Hidrogênio/farmacologia , Dados de Sequência Molecular , Fases de Leitura Aberta/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Paraquat/farmacologia , Pennisetum/efeitos dos fármacos , Pennisetum/genética , Superóxido Dismutase/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
4.
Biotechnol Lett ; 33(8): 1689-97, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21528404

RESUMO

Stress responsive transcriptional regulation is an adaptive strategy of plants that alleviates the adverse effects of environmental stresses. The ectopic overexpression of Dehydration-Responsive Element Binding transcription factors (DREBs) either in homologous or in heterologous plants improved stress tolerance indicating the DRE/DREB regulon is conserved across plants. We developed 30 transgenic T(0) rice plants overexpressing OsDREB2A which were devoid of any growth penalty or phenotypic abnormalities during stressed or non-stressed conditions. Integration of T-DNA in the rice genome and stress inducible overexpression of OsDREB2A had occurred in these transgenic lines. Functional analyses of T(1)-3 and T(1)-10 lines revealed significant tolerance to osmotic, salt and dehydration stresses during simulated stress conditions with enhanced growth performance as compared to wild type. OsDREB2A, thus, confers stress tolerance in homologous rice system that failed in the heterologous Arabidopsis system earlier.


Assuntos
Desidratação/metabolismo , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Tolerância ao Sal/fisiologia , Fatores de Transcrição/metabolismo , Northern Blotting , Manitol/farmacologia , Oryza/genética , Pressão Osmótica , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/fisiologia , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
5.
Mol Genet Genomics ; 283(3): 243-54, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20127116

RESUMO

Molecular chaperones (Hsps) have been shown to facilitate protein folding or assembly under various developmental and adverse environmental conditions. The aim of this study was to unravel a possible role of heat-shock proteins in conferring abiotic stress tolerance to plants. We isolated a cDNA encoding a cytoplasmic Hsp70 (PgHsc70) from Pennisetum glaucum by screening heat-stress cDNA library. PgHsc70 cDNA encoding 649 amino acids represents all conserved signature motifs characteristic of Hsp70s. The predicted molecular model of PgHsc70 protein suggests that the N-terminus ATP-binding region is evolutionarily conserved, in comparison to C-terminus peptide-binding domains. A single intron in ATPase domain coding region of PgHsc70 exhibited a high degree of conservation with respect to its position and phasing among other plant Hsp70 genes. Recombinant PgHsc70 protein purified from E. coli possessed in vitro chaperone activity and protected PgHsc70 expressing bacteria from damage caused by heat and salinity stress. Nucleotide sequence analysis of 5' flanking promoter region of PgHsc70 gene revealed a potential heat-shock element (HSE) and other putative stress-responsive transcription factor binding sites. Positive correlation existed between differentially up-regulated PgHsc70 transcript levels and the duration and intensity of different environmental stresses. Molecular and biochemical analyses revealed that PgHsc70 gene was a member of the Hsp70 family and suggested that its origin was from duplication of a common ancestral gene. Transcript induction data, presence of several putative stress-responsive transcription factor-binding sites in the promoter region of PgHsc70 and the presence of a protective in vitro chaperone activity of this protein against damage caused by heat and salinity, when expressed in E. coli, suggest its probable role in conferring abiotic stress tolerance to this plant.


Assuntos
Proteínas de Choque Térmico HSC70/genética , Pennisetum/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular/métodos , Primers do DNA , DNA Complementar/genética , DNA de Plantas/genética , Etiquetas de Sequências Expressas , Proteínas de Choque Térmico HSC70/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Oryza/genética , Oryza/metabolismo , Pennisetum/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/metabolismo , Transcrição Gênica
6.
Anal Biochem ; 376(2): 258-61, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18334224

RESUMO

We have developed a simple and efficient protocol for the isolation of good-quality recombinant phage DNA useful for all downstream processing, including automated sequencing. The overnight-grown phage particles were effectively precipitated (without any contaminating Escherichia coli DNA and other culture media components) by adjusting the pH of the culture medium to 5.2 with sodium acetate, followed by addition of ethanol to 25%. The phage DNA was selectively precipitated with ethanol in the presence of guanidinium thiocyanate under alkaline pH, resulting in uniform quality and quantity of phage DNA. The quality of the phage DNA preparation was demonstrated by DNA sequencing that provided an average read length of >700 bases (PHRED20 quality). This protocol for plating, picking, growing, and subsequent DNA purification of individual phage clones can be completely automated using any standard robotic platform. This protocol does not require any commercial kits and can be completed within 2h.


Assuntos
Bacteriófago lambda/genética , DNA Viral/isolamento & purificação , Biblioteca Gênica , DNA Viral/química , DNA Viral/genética , Análise de Sequência de DNA , Moldes Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...