Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Nephrol ; 2020: 4108418, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343937

RESUMO

The final dilution of urine is regulated via aquaporin-2 water channels in the distal part of the nephron. It is unclear whether urine dilution ability in autosomal dominant polycystic kidney disease patients (ADPKD patients) differs from other patients with similar degree of impaired renal function (non-ADPKD patients). The purpose of this case control study was to measure urine dilution ability in ADPKD patients compared to non-ADPKD patients and healthy controls. Methods. Eighteen ADPKD, 16 non-ADPKD patients (both with chronic kidney disease, stage I-IV), and 18 healthy controls received an oral water load of 20 ml/kg body weight. Urine was collected in 7 consecutive periods. We measured free water clearance (CH2O), urine osmolality, urine output, fractional excretion of sodium, urine aquaporin2 (u-AQP2), and urine epithelial sodium channel (u-ENaC). Blood samples were drawn four times (at baseline, 2 h, 4 h, and 6 hours after the water load) for analyses of plasma osmolality, vasopressin, renin, angiotensin II, and aldosterone. Brachial and central blood pressure was measured regularly during the test. Results. The three groups were age and gender matched, and the patient groups had similar renal function. One hour after water load, the ADPKD patients had an increased CH2O compared to non-ADPKD patients (2.97 ± 2.42 ml/min in ADPKD patients vs. 1.31 ± 1.50 ml/min in non-ADPKD patients, p0.029). The reduction in u-AQP2 and u-ENaC occurred earlier in ADPKD than in non-ADPKD patients. Plasma concentrations of vasopressin, renin, angiotensin II, and aldosterone and blood pressure measurements did not show any differences that could explain the deviation in urine dilution capacity between the patient groups. Conclusions. ADPKD patients had a higher CH2O than non-ADPKD patients after an oral water load, and u-AQP2 and u-ENaC were more rapidly reduced than in non-ADPKD patients. Thus, urine-diluting capacity may be better preserved in ADPKD patients than in non-ADPKD patients.

2.
BMC Nephrol ; 21(1): 379, 2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32867720

RESUMO

BACKGROUND: Concentration of the urine is primarily regulated via vasopressin dependent aquaporin-2 water channels in the apical membrane of kidney principal cells. It is unclear whether urine concentration ability in ADPKD differs from other patients with similar degree of impaired renal function (non-ADPKD patients). The purpose of this case control study was to measure urine concentration ability in ADPKD patients compared to non-ADPKD patients and healthy controls. METHODS: A seventeen hour long water deprivation test was carried out in 17 ADPKD patients (CKD I-IV), 16 non-ADPKD patients (CKD I-IV), and 18 healthy controls. Urine was collected in 4 consecutive periods during water deprivation (12 h, 1 h, 2 h and 2 h, respectively) and analyzed for osmolality (u-Osm), output (UO), fractional excretion of sodium (FENa), aquaporin2 (u-AQP2) and ENaC (u-ENaC). Blood samples were drawn trice (after 13-, 15-, and 17 h after water deprivation) for analyses of osmolality (p-Osm), vasopressin (p-AVP), and aldosterone (p-Aldo). RESULTS: U-Osm was significantly lower and FENa significantly higher in both ADPKD patients and non-ADPKD patients compared to healthy controls during the last three periods of water deprivation. During the same periods, UO was higher and secretion rates of u-AQP2 and u-ENaC were lower and at the same level in the two groups of patients compared to controls. P-AVP and p-Osm did not differ significantly between the three groups. P-Aldo was higher in both groups of patients than in controls. CONCLUSIONS: Urine concentration ability was reduced to the same extent in patients with ADPKD and other chronic kidney diseases with the same level of renal function compared to healthy controls. The lower urine excretion of AQP2 and ENaC suggests that the underlying mechanism may be a reduced tubular response to vasopressin and aldosterone. TRIAL REGISTRATION: Current Controlled Trial NCT04363554 , date of registration: 20.08.2017.


Assuntos
Capacidade de Concentração Renal/fisiologia , Rim Policístico Autossômico Dominante/fisiopatologia , Insuficiência Renal Crônica/fisiopatologia , Adulto , Idoso , Aldosterona/sangue , Aquaporina 2/urina , Estudos de Casos e Controles , Canais Epiteliais de Sódio/urina , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Concentração Osmolar , Rim Policístico Autossômico Dominante/metabolismo , Eliminação Renal , Insuficiência Renal Crônica/metabolismo , Índice de Gravidade de Doença , Sódio/urina , Vasopressinas/sangue , Privação de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...