Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 381(6665): 1433-1440, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37769088

RESUMO

Functional polyethylenes possess valuable bulk and surface properties, but the limits of current synthetic methods narrow the range of accessible materials and prevent many envisioned applications. Instead, these materials are often used in composite films that are challenging to recycle. We report a Cu-catalyzed amination of polyethylenes to form mono- and bifunctional materials containing a series of polar groups and substituents. Designed catalysts with hydrophobic moieties enable the amination of linear and branched polyethylenes without chain scission or cross-linking, leading to polyethylenes with otherwise inaccessible combinations of functional groups and architectures. The resulting materials possess tunable bulk and surface properties, including toughness, adhesion to metal, paintability, and water solubility, which could unlock applications for functional polyethylenes and reduce the need for complex composites.

2.
Front Bioeng Biotechnol ; 9: 617141, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34195178

RESUMO

Numerous surgical procedures are daily performed worldwide to replace and repair damaged tissue. Tissue engineering is the field devoted to the regeneration of damaged tissue through the incorporation of cells in biocompatible and biodegradable porous constructs, known as scaffolds. The scaffolds act as host biomaterials of the incubating cells, guiding their attachment, growth, differentiation, proliferation, phenotype, and migration for the development of new tissue. Furthermore, cellular behavior and fate are bound to the biodegradation of the scaffold during tissue generation. This article provides a critical appraisal of how key biomaterial scaffold parameters, such as structure architecture, biochemistry, mechanical behavior, and biodegradability, impart the needed morphological, structural, and biochemical cues for eliciting cell behavior in various tissue engineering applications. Particular emphasis is given on specific scaffold attributes pertaining to skin and brain tissue generation, where further progress is needed (skin) or the research is at a relatively primitive stage (brain), and the enumeration of some of the most important challenges regarding scaffold constructs for tissue engineering.

3.
J Am Chem Soc ; 143(12): 4531-4535, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33734671

RESUMO

Polyolefins are important commodity plastics, yet their lack of functional groups limits their applications. The functionalization of C-H bonds holds promise for incorporating functionalities into polymers of ethylene and linear α-olefins. However, the selective functionalization of polyolefins derived from branched alkenes, even monobranched, 1,1-substituted alkenes, has not been achieved. These polymers are less reactive, due to steric effects, and they are prone to chain scission that degrades the polymer. We report the chemoselective and regioselective oxidation of a commercially important polymer of a branched olefin, polyisobutene. A polyfluorinated ruthenium-porphyrin catalyst incorporates ketone units into polyisobutene at methylene positions without chain cleavage. The oxidized polymer is thermally stable, yet it undergoes programmed reactions and possesses enhanced wetting properties.

4.
Nat Commun ; 11(1): 4848, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973166

RESUMO

Polydopamine (PDA) is a simple and versatile conformal coating material that has been proposed for a variety of uses; however in practice its performance is often hindered by poor mechanical properties and high roughness. Here, we show that blue-diode laser annealing dramatically improves mechanical performance and reduces roughness of PDA coatings. Laser-annealed PDA (LAPDA) was shown to be >100-fold more scratch resistant than pristine PDA and even better than hard inorganic substrates, which we attribute to partial graphitization and covalent coupling between PDA subunits during annealing. Moreover, laser annealing provides these benefits while preserving other attractive properties of PDA, as demonstrated by the superior biofouling resistance of antifouling polymer-grafted LAPDA compared to PDA modified with the same polymer. Our work suggests that laser annealing may allow the use of PDA in mechanically demanding applications previously considered inaccessible, without sacrificing the functional versatility that is so characteristic of PDA.


Assuntos
Indóis/química , Indóis/efeitos da radiação , Lasers , Polímeros/química , Polímeros/efeitos da radiação , Incrustação Biológica , Materiais Revestidos Biocompatíveis/química , Teste de Materiais , Propriedades de Superfície
5.
ACS Nano ; 14(4): 3885-3895, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32150387

RESUMO

We report a versatile method to form bacterial cellulose coatings through simple dip-coating of 3D objects in suspensions of cellulose-producing bacteria. The adhesion of cellulose-secreting bacteria on objects was promoted through surface roughness and chemistry. Immobilized bacteria secreted highly porous hydrogels with high water content directly from the surface of a variety of materials. The out-of-plane orientation of cellulose fibers present in this coating leads to high mechanical stability and energy dissipation with minimal cellulose concentration. The conformal, biocompatible, and lubricious nature of the in situ grown cellulose surfaces makes the coated 3D objects attractive for biomedical applications.


Assuntos
Celulose , Materiais Revestidos Biocompatíveis , Bactérias
6.
ACS Appl Mater Interfaces ; 11(46): 43599-43607, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31644269

RESUMO

Inspired by the catechol and amine-rich adhesive proteins of mussels, polydopamine (pDA) has become one of the most widely employed methods for functionalizing material surfaces, powered in part by the versatility and simplicity of pDA film deposition that takes place spontaneously on objects immersed in an alkaline aqueous solution of dopamine monomer. Despite the widespread adoption of pDA as a multifunctional coating for surface modification, it exhibits poor mechanical performance. Attempts to modify the physical properties of pDA by incorporation of oxidizing agents, cross-linkers, or carbonization of the films at ultrahigh temperatures have been reported; however, improving mechanical properties with mild post-treatments without sacrificing the functionality and versatility of pDA remains a challenge. Here, we demonstrate thermal annealing at a moderate temperature (130 °C) as a facile route to enhance mechanical robustness of pDA coatings. Chemical spectroscopy, X-ray scattering, molecular force spectroscopy, and bulk mechanical analyses indicate that monomeric and oligomeric species undergo further polymerization during thermal annealing, leading to fundamental changes in molecular and bulk mechanical behavior of pDA. Considerable improvements in scratch resistance were noted in terms of both penetration depth (32% decrease) and residual depth (74% decrease) for the annealed pDA coating, indicating the enhanced ability of the annealed coating to resist mechanical deformations. Thermal annealing resulted in significant enhancement in the intermolecular and cohesive interactions between the chains in the pDA structure, attributed to cross-linking and increased entanglements, preventing desorption and detachment of the chains from the coating. Importantly, improvements in pDA mechanical performance through thermal annealing did not compromise the ability of pDA to support secondary coating reactions as evidenced by electroless deposition of a metal film adlayer on annealed pDA.


Assuntos
Materiais Revestidos Biocompatíveis/química , Indóis/química , Polímeros/química , Animais , Materiais Biomiméticos , Bivalves , Propriedades de Superfície
7.
JOR Spine ; 2(3): e1065, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31572982

RESUMO

Bovine caudal discs have been widely used in spine research due to their increased availability, large size, and mechanical and biochemical properties that are comparable to healthy human discs. However, despite their extensive use, the radial variations in bovine disc composition have not yet been rigorously quantified with high spatial resolution. Previous studies were limited to qualitative analyses or provided limited spatial resolution in biochemical properties. Thus, the main objective of this study was to provide quantitative measurements of biochemical composition with higher spatial resolution than previous studies that employed traditional biochemical techniques. Specifically, traditional biochemical analyses were used to measure water, sulfated glycosaminoglycan, collagen, and DNA contents. Gravimetric water content was compared to data obtained through Raman spectroscopy and differential scanning calorimetry. Additionally, spatial distribution of lipids in the disc's collagen network was visualized and quantified, for the first time, using multi-modal second harmonic generation (SHG) and Coherent anti-Stokes Raman (CARS) microscopy. Some heterogeneity was observed in the nucleus pulposus, where the water content and water-to-protein ratio of the inner nucleus were greater than the outer nucleus. In contrast, the bovine annulus fibrosus exhibited a more heterogeneous distribution of biochemical properties. Comparable results between orthohydroxyproline assay and SHG imaging highlight the potential benefit of using SHG microscopy as a less destructive method for measuring collagen content, particularly when relative changes are of interest. CARS images showed that lipid deposits were distributed equally throughout the disc and appeared either as individual droplets or as clusters of small droplets. In conclusion, this study provided a more comprehensive assessment of spatial variations in biochemical composition of the bovine caudal disc.

8.
Angew Chem Int Ed Engl ; 58(35): 12271-12279, 2019 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-31276607

RESUMO

A synthetic strategy to incorporate catechol functional groups into benzoxazine thermoset monomers was developed, leading to a family of bioinspired small-molecule resins and main-chain polybenzoxazines derived from biologically available phenols. Lap-shear adhesive testing revealed a polybenzoxazine derivative with greater than 5 times improved shear strength on aluminum substrates compared to a widely studied commercial benzoxazine resin. Derivative synthesis identified the catechol moiety as an important design feature in the adhesive performance and curing behavior of this bioinspired thermoset. Favorable mechanical properties comparable to commercial resin were maintained, and glass transition temperature and char yield under nitrogen were improved. Blending of monomers with bioinspired main-chain polybenzoxazine derivatives provided formulations with enhanced shear adhesive strengths up to 16 MPa, while alloying with commercial core-shell particle-toughened epoxy resins led to shear strengths exceeding 20 MPa. These results highlight the utility of bioinspired design and the use of biomolecules in the preparation of high-performance thermoset resins and adhesives with potential utility in transportation and aerospace industries and applications in advanced composites synthesis.

9.
Angew Chem Int Ed Engl ; 58(4): 1077-1082, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30485624

RESUMO

Inspired by the adhesive proteins of mussels, polydopamine (pDA) has emerged as one of the most widely employed materials for surface functionalization. Despite numerous attempts at characterization, little consensus has emerged regarding whether pDA is a covalent polymer or a noncovalent aggregate of low molecular weight species. Here, we employed single-molecule force spectroscopy (SMFS) to characterize pDA films. Retraction of a pDA-coated cantilever from an oxide surface shows the characteristic features of a polymer with contour lengths of up to 200 nm. pDA polymers are generally weakly bound to the surface through much of their contour length, with occasional "sticky" points. Our findings represent the first direct evidence for the polymeric nature of pDA and provide a foundation upon which to better understand and tailor its physicochemical properties.


Assuntos
Indóis/química , Polímeros/química , Titânio/química , Adesividade , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Peso Molecular , Análise Espectral , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...