Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metab Eng ; 60: 168-182, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32335188

RESUMO

Bio-based production of industrial chemicals using synthetic biology can provide alternative green routes from renewable resources, allowing for cleaner production processes. To efficiently produce chemicals on-demand through microbial strain engineering, biomanufacturing foundries have developed automated pipelines that are largely compound agnostic in their time to delivery. Here we benchmark the capabilities of a biomanufacturing pipeline to enable rapid prototyping of microbial cell factories for the production of chemically diverse industrially relevant material building blocks. Over 85 days the pipeline was able to produce 17 potential material monomers and key intermediates by combining 160 genetic parts into 115 unique biosynthetic pathways. To explore the scale-up potential of our prototype production strains, we optimized the enantioselective production of mandelic acid and hydroxymandelic acid, achieving gram-scale production in fed-batch fermenters. The high success rate in the rapid design and prototyping of microbially-produced material building blocks reveals the potential role of biofoundries in leading the transition to sustainable materials production.


Assuntos
Bactérias/metabolismo , Microbiologia Industrial/métodos , Engenharia Metabólica/métodos , Benchmarking , Vias Biossintéticas , Indústria Química , Simulação por Computador , Fermentação , Ácidos Mandélicos/metabolismo , Estereoisomerismo
2.
Appl Microbiol Biotechnol ; 99(3): 1229-36, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25104031

RESUMO

This work demonstrates the first example of the immobilisation of MAO-N whole cells to produce a biocatalyst that remained suitable for repetitive use after 11 months of storage and stable up to 15 months after immobilisation. The production of Escherichia coli expressing recombinant MAO-N was scaled up to bioreactors under regulated, previously optimised conditions (10% DO, pH 7), and the amount of biomass was almost doubled compared to flask cultivation. Subsequently, pilot immobilisation of the whole-cell biocatalyst using LentiKats technology was performed. The amount of the immobilised biomass was optimised and the process was scaled up to a production level by immobilising 15 g of dry cell weight per litre of polyvinyl alcohol to produce 3 kg of whole-cell ready-to-use biocatalyst. The immobilised biocatalyst retained its initial activity over six consecutive biotransformations of the secondary amine model compound 3-azabicylo [3,3,0]octane, a building block of the hepatitis C drug telaprevir. Consecutive cultivation cycles in growth conditions not only increased the initial specific activity of biocatalyst produced on the industrial plant by more than 30%, but also significantly increased the rate of the biotransformation compared to the non-propagated biocatalyst.


Assuntos
Células Imobilizadas/metabolismo , Monoaminoxidase/metabolismo , Monoaminas Biogênicas/metabolismo , Reatores Biológicos/microbiologia , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Monoaminoxidase/genética , Oxirredução , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
Chembiochem ; 12(5): 802-10, 2011 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-21337480

RESUMO

Cyclophilin A (CypA) is a member of the immunophilin family of proteins and receptor for the immunosuppressant drug cyclosporin A (CsA). Here we describe the design and synthesis of a new class of small-molecule inhibitors for CypA that are based upon a dimedone template. Electrospray mass spectrometry is utilised as an initial screen to quantify the protein affinity of the ligands. Active inhibitors and fluorescently labelled derivatives are then used as chemical probes for investigating the biological role of cyclophilins in the nematode Caenorhabditis elegans.


Assuntos
Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Caenorhabditis elegans/efeitos dos fármacos , Ciclofilina A/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Ciclofilina A/metabolismo , Ciclosporina , Desenho de Fármacos , Ligantes , Modelos Moleculares , Ligação Proteica , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...