Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2307858, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38269485

RESUMO

The organic nucleation of the pharmaceutical ibuprofen is investigated, as triggered by the protonation of ibuprofen sodium salt at elevated pH. The growth and aggregation of nanoscale solution species by Analytical Ultracentrifugation and Molecular Dynamics (MD) simulations is tracked. Both approaches reveal solvated molecules, oligomers, and prenucleation clusters, their size as well as their hydration at different reaction stages. By combining surface-specific vibrational spectroscopy and MD simulations, water interacting with ibuprofen at the air-water interface during nucleation is probed. The results show the structure of water changes upon ibuprofen protonation in response to the charge neutralization. Remarkably, the water structure continues to evolve despite the saturation of protonated ibuprofen at the hydrophobic interface. This further water rearrangement is associated with the formation of larger aggregates of ibuprofen molecules at a late prenucleation stage. The nucleation of ibuprofen involves ibuprofen protonation and their hydrophobic assembly. The results highlight that these processes are accompanied by substantial water reorganization. The critical role of water is possibly relevant for organic nucleation in aqueous environments in general.

2.
Nat Chem ; 15(8): 1146-1154, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37231298

RESUMO

Biomolecular condensates, protein-rich and dynamic membrane-less organelles, play critical roles in a range of subcellular processes, including membrane trafficking and transcriptional regulation. However, aberrant phase transitions of intrinsically disordered proteins in biomolecular condensates can lead to the formation of irreversible fibrils and aggregates that are linked to neurodegenerative diseases. Despite the implications, the interactions underlying such transitions remain obscure. Here we investigate the role of hydrophobic interactions by studying the low-complexity domain of the disordered 'fused in sarcoma' (FUS) protein at the air/water interface. Using surface-specific microscopic and spectroscopic techniques, we find that a hydrophobic interface drives fibril formation and molecular ordering of FUS, resulting in solid-like film formation. This phase transition occurs at 600-fold lower FUS concentration than required for the canonical FUS low-complexity liquid droplet formation in bulk. These observations highlight the importance of hydrophobic effects for protein phase separation and suggest that interfacial properties drive distinct protein phase-separated structures.


Assuntos
Domínios Proteicos , Fosforilação , Interações Hidrofóbicas e Hidrofílicas , Transição de Fase
3.
Sci Adv ; 8(31): eabm7528, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35930639

RESUMO

Protein condensation into liquid-like structures is critical for cellular compartmentalization, RNA processing, and stress response. Research on protein condensation has primarily focused on membraneless organelles in the absence of lipids. However, the cellular cytoplasm is full of lipid interfaces, yet comparatively little is known about how lipids affect protein condensation. Here, we show that nonspecific interactions between lipids and the disordered fused in sarcoma low-complexity (FUS LC) domain strongly affect protein condensation. In the presence of anionic lipids, FUS LC formed lipid-protein clusters at concentrations more than 30-fold lower than required for pure FUS LC. Lipid-triggered FUS LC clusters showed less dynamic protein organization than canonical, lipid-free FUS LC condensates. Lastly, we found that phosphatidylserine membranes promoted FUS LC condensates having ß sheet structures, while phosphatidylglycerol membranes initiated unstructured condensates. Our results show that lipids strongly influence FUS LC condensation, suggesting that protein-lipid interactions modulate condensate formation in cells.

4.
J Chem Phys ; 156(23): 234706, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35732527

RESUMO

Biomembrane hydration is crucial for understanding processes at biological interfaces. While the effect of the lipid headgroup has been studied extensively, the effect (if any) of the acyl chain chemical structure on lipid-bound interfacial water has remained elusive. We study model membranes composed of phosphatidylethanolamine (PE) and phosphatidylcholine (PC) lipids, the most abundant lipids in biomembranes. We explore the extent to which the lipid headgroup packing and associated water organization are affected by the lipid acyl tail unsaturation and chain length. To this end, we employ a combination of surface-sensitive techniques, including sum-frequency generation spectroscopy, surface pressure measurements, and Brewster angle microscopy imaging. Our results reveal that the acyl tail structure critically affects the headgroup phosphate orientational distribution and lipid-associated water molecules, for both PE and PC lipid monolayers at the air/water interface. These insights reveal the importance of acyl chain chemistry in determining not only membrane fluidity but also membrane hydration.


Assuntos
Fosfatidilcolinas , Fosfolipídeos , Bicamadas Lipídicas/química , Fluidez de Membrana , Fosfatidilcolinas/química , Fosfolipídeos/química , Água/química
5.
Biomacromolecules ; 23(3): 1214-1220, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35080878

RESUMO

Antifreeze proteins (AFPs) and glycoproteins (AFGPs) are exemplary at modifying ice crystal growth and at inhibiting ice recrystallization (IRI) in frozen solutions. These properties make them highly attractive for cold storage and cryopreservation applications of biological tissue, food, and other water-based materials. The specific requirements for optimal cryostorage remain unknown, but high IRI activity has been proposed to be crucial. Here, we show that high IRI activity alone is insufficient to explain the beneficial effects of AF(G)Ps on human red blood cell (hRBC) survival. We show that AF(G)Ps with different IRI activities cause similar cell recoveries of hRBCs and that a modified AFGP variant with decreased IRI activity shows increased cell recovery. The AFGP variant was found to have enhanced interactions with a hRBC model membrane, indicating that the capability to stabilize cell membranes is another important factor for increasing the survival of cells after cryostorage. This information should be considered when designing novel synthetic cryoprotectants.


Assuntos
Proteínas Anticongelantes , Gelo , Proteínas Anticongelantes/química , Criopreservação , Crioprotetores/química , Crioprotetores/farmacologia , Congelamento , Humanos
6.
Langmuir ; 37(1): 469-477, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33356282

RESUMO

It is widely recognized that solvation is one of the major factors determining structure and functionality of proteins and long peptides, however it is a formidable challenge to address it both experimentally and computationally. For this reason, simple peptides are used to study fundamental aspects of solvation. It is well established that alcohols can change the peptide conformation and tuning of the alcohol content in solution can dramatically affect folding and, as a consequence, the function of the peptide. In this work, we focus on the leucine and lysine based LKα14 peptide designed to adopt an α-helical conformation at an apolar-polar interface. We investigate LKα14 peptide's bulk and interfacial behavior in water/ethanol mixtures combining a suite of experimental techniques (namely, circular dichroism and nuclear magnetic resonance spectroscopy for the bulk solution, surface pressure measurements and vibrational sum frequency generation spectroscopy for the air-solution interface) with molecular dynamics simulations. We observe that ethanol highly affects both the peptide location and conformation. At low ethanol content LKα14 lacks a clear secondary structure in bulk and shows a clear preference to reside at the air-solution interface. When the ethanol content in solution increases, the peptide's interfacial affinity is markedly reduced and the peptide approaches a stable α-helical conformation in bulk facilitated by the amphiphilic nature of the ethanol molecules.

7.
Polymers (Basel) ; 11(5)2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31052227

RESUMO

The combination of flexibility and semiflexibility in a single molecule is a powerful design principle both in nature and in materials science. We present results on the conformational behavior of a single multiblock-copolymer chain, consisting of equal amounts of Flexible (F) and Semiflexible (S) blocks with different affinity to an implicit solvent. We consider a manifold of macrostates defined by two terms in the total energy: intermonomer interaction energy and stiffness energy. To obtain diagrams of states (pseudo-phase diagrams), we performed flat-histogram Monte Carlo simulations using the Stochastic Approximation Monte Carlo algorithm (SAMC). We have accumulated two-Dimensional Density of States (2D DoS) functions (defined on the 2D manifold of macrostates) for a SF-multiblock-copolymer chain of length N = 64 with block lengths b = 4, 8, 16, and 32 in two different selective solvents. In an analysis of the canonical ensemble, we calculated the heat capacity and determined its maxima and the most probable morphologies in different regions of the state diagrams. These are rich in various, non-trivial morphologies, which are formed without any specific interactions, and depend on the block length and the type of solvent selectivity (preferring S or F blocks, respectively). We compared the diagrams with those for the non-selective solvent and reveal essential changes in some cases. Additionally, we implemented microcanonical analysis in the "conformational" microcanonical ( N V U , where U is the potential energy) and the true microcanonical ( N V E , where E is the total energy) ensembles with the aim to reveal and classify pseudo-phase transitions, occurring under the change of temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...