Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38786814

RESUMO

Nowadays, nanotechnology represents a well-established approach, suitable for designing, producing, and applying materials to a broad range of advanced sectors. In this context, the use of well-suited "nano" approaches accounted for a big step forward in conferring optimized flame-retardant features to such a cellulosic textile material as cotton, considering its high ease of flammability, yearly production, and extended use. Being a surface-localized phenomenon, the flammability of cotton can be quite simply and effectively controlled by tailoring its surface through the deposition of nano-objects, capable of slowing down the heat and mass transfer from and to the textile surroundings, which accounts for flame fueling and possibly interacting with the propagating radicals in the gas phase. In this context, the layer-by-layer (LbL) approach has definitively demonstrated its reliability and effectiveness in providing cotton with enhanced flame-retardant features, through the formation of fully inorganic or hybrid organic/inorganic nanostructured assemblies on the fabric surface. Therefore, the present work aims to summarize the current state of the art related to the use of nanostructured LbL architectures for cotton flame retardancy, offering an overview of the latest research outcomes that often highlight the multifunctional character of the deposited assemblies and discussing the current limitations and some perspectives.

2.
Polymers (Basel) ; 16(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38257068

RESUMO

A series of polyacrylonitrile (PAN)-based block copolymers with poly(methyl methacrylate) (PMMA) as sacrificial bock were synthesized by atom transfer radical polymerization and used as precursors for the synthesis of porous carbons. The carbons enriched with O- and S-containing groups, introduced by controlled oxidation and sulfuration, respectively, were characterized by Raman spectroscopy, scanning electron microscopy, and X-ray photoelectron spectrometry, and their surface textural properties were measured by a volumetric analyzer. We observed that the presence of sulfur tends to modify the structure of the carbons, from microporous to mesoporous, while the use of copolymers with a range of molar composition PAN/PMMA between 10/90 and 47/53 allows the obtainment of carbons with different degrees of porosity. The amount of sacrificial block only affects the morphology of carbons stabilized in oxygen, inducing their nanostructuration, but has no effect on their chemical composition. We also demonstrated their suitability for separating a typical N2/CO2 post-combustion stream.

3.
Polymers (Basel) ; 15(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37959922

RESUMO

Polymer hydrogels are 3D networks consisting of hydrophilic crosslinked macromolecular chains, allowing them to swell and retain water. Since their invention in the 1960s, they have become an outstanding pillar in the design, development, and application of engineered polymer systems suitable for biomedical and pharmaceutical applications (such as drug or cell delivery, the regeneration of hard and soft tissues, wound healing, and bleeding prevention, among others). Despite several well-established synthetic routes for developing polymer hydrogels based on batch polymerization techniques, about fifteen years ago, researchers started to look for alternative methods involving simpler reaction paths, shorter reaction times, and lower energy consumption. In this context, frontal polymerization (FP) has undoubtedly become an alternative and efficient reaction model that allows for the conversion of monomers into polymers via a localized and propagating reaction-by means of exploiting the formation and propagation of a "hot" polymerization front-able to self-sustain and propagate throughout the monomeric mixture. Therefore, the present work aims to summarize the main research outcomes achieved during the last few years concerning the design, preparation, and application of FP-derived polymeric hydrogels, demonstrating the feasibility of this technique for the obtainment of functional 3D networks and providing the reader with some perspectives for the forthcoming years.

4.
Polymers (Basel) ; 15(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37571080

RESUMO

The mechanical and biological behaviors of PMMA/Al2O3 composites incorporating 30 wt.%, 40 wt.%, and 50 wt.% of Al2O3 were thoroughly characterized as regards to their possible application in implant-supported prostheses. The Al2O3 particles accounted for an increase in the flexural modulus of PMMA. The highest value was recorded for the composite containing 40 wt.% Al2O3 (4.50 GPa), which was about 18% higher than that of its unfilled counterpart (3.86 GPa). The Al2O3 particles caused a decrease in the flexural strength of the composites, due to the presence of filler aggregates and voids, though it was still satisfactory for the intended application. The roughness (Ra) and water contact angle had the same trend, ranging from 1.94 µm and 77.2° for unfilled PMMA to 2.45 µm and 105.8° for the composite containing the highest alumina loading, respectively, hence influencing both the protein adsorption and cell adhesion. No cytotoxic effects were found, confirming that all the specimens are biocompatible and capable of sustaining cell growth and proliferation, without remarkable differences at 24 and 48 h. Finally, Al2O3 was able to cause strong cell responses (cell orientation), thus guiding the tissue formation in contact with the composite itself and not enhancing its osteoconductive properties, supporting the PMMA composite's usage in the envisaged application.

5.
Polymers (Basel) ; 15(6)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36987192

RESUMO

In this work, the combination of biochar produced through a pyrolytic process of hemp hurd with commercial humic acid as a potential biomass-based flame-retardant system for ethylene vinyl acetate copolymer is thoroughly investigated. To this aim, ethylene vinyl acetate composites containing hemp-derived biochar at two different concentrations (i.e., 20 and 40 wt.%) and 10 wt.% of humic acid were prepared. The presence of increasing biochar loadings in ethylene vinyl acetate accounted for an increasing thermal and thermo-oxidative stability of the copolymer; conversely, the acidic character of humic acid anticipated the degradation of the copolymer matrix, even in the presence of the biochar. Further, as assessed by forced-combustion tests, the incorporation of humic acid only in ethylene vinyl acetate slightly decreased both peaks of heat release rate (pkHRR) and total heat release (THR, by 16% and 5%, respectively), with no effect on the burning time. At variance, for the composites containing biochar, a strong decrease in pkHRR and THR values was observed, approaching -69 and -29%, respectively, in the presence of the highest filler loading, notwithstanding, for this latter, a significant increase in the burning time (by about 50 s). Finally, the presence of humic acid significantly lowered the Young's modulus, unlike biochar, for which the stiffness remarkably increased from 57 MPa (unfilled ethylene vinyl acetate) to 155 Mpa (for the composite containing 40 wt.% of the filler).

6.
Polymers (Basel) ; 15(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36904400

RESUMO

ZnO flower-like (ZFL) and needle (ZLN) structures were synthesized and embedded into UV-curable acrylic resin (EB), with the aim to study the effect of filler loading on the piezoelectric properties of the resulting composite films. The composites showed uniform dispersion of fillers within the polymer matrix. However, by increasing the filler amount, the number of aggregates increased, and ZnO fillers appeared not to be perfectly embedded in polymer film, indicating poor interaction with acrylic resin. The filler content increase caused an increase in glass transition temperature (Tg) and a decrease in storage modulus in the glassy state. In particular, compared with pure UV-cured EB (Tg = 50 °C), 10 wt.% ZFL and ZLN presented Tg values of 68 and 77 °C, respectively. The piezoelectric response generated by the polymer composites was good when measured at 19 Hz as a function of the acceleration; the RMS output voltages achieved at 5 g were 4.94 and 1.85 mV for the composite films containing ZFL and ZLN, respectively, at their maximum loading levels (i.e., 20 wt.%). Further, the RMS output voltage increase was not proportional to the filler loading; this finding was attributable to the decrease in the storage modulus of the composites at high ZnO loading rather than the dispersion of filler or the number of particles on the surface.

7.
Chem Rev ; 123(6): 3237-3298, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36827528

RESUMO

The synthesis and processing of most thermoplastics and thermoset polymeric materials rely on energy-inefficient and environmentally burdensome manufacturing methods. Frontal polymerization is an attractive, scalable alternative due to its exploitation of polymerization heat that is generally wasted and unutilized. The only external energy needed for frontal polymerization is an initial thermal (or photo) stimulus that locally ignites the reaction. The subsequent reaction exothermicity provides local heating; the transport of this thermal energy to neighboring monomers in either a liquid or gel-like state results in a self-perpetuating reaction zone that provides fully cured thermosets and thermoplastics. Propagation of this polymerization front continues through the unreacted monomer media until either all reactants are consumed or sufficient heat loss stalls further reaction. Several different polymerization mechanisms support frontal processes, including free-radical, cat- or anionic, amine-cure epoxides, and ring-opening metathesis polymerization. The choice of monomer, initiator/catalyst, and additives dictates how fast the polymer front traverses the reactant medium, as well as the maximum temperature achievable. Numerous applications of frontally generated materials exist, ranging from porous substrate reinforcement to fabrication of patterned composites. In this review, we examine in detail the physical and chemical phenomena that govern frontal polymerization, as well as outline the existing applications.

8.
Materials (Basel) ; 15(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36556874

RESUMO

Human history is largely characterized by the massive use of wood, the most well-known natural composite material, possessing unique thermal, mechanical, and environmental features that make it suitable for several applications, ranging from civil engineering, art, and household uses, to business uses (including furniture, stationery, shipbuilding, and fuel). Further, as a renewable and recyclable biomass, wood perfectly matches the current circular economy concept. However, because of its structure and composition, wood is not transparent: therefore, the possibility of removing the embedded lignin, hence limiting the light-scattering phenomena, has been investigated over the last ten to fifteen years, hence obtaining the so-called "transparent wood (TW)". This latter represents an up-to-date key material, as it can be utilized as obtained or further functionalized, combining the transparency with other features (such as flame retardance, energy storage ability, and environmental protection, among others), which widen the potential (and practical) applications of wood. The present manuscript aims at summarizing first the current methods employed for obtaining transparent wood, and then the latest achievements concerning the properties of transparent wood, providing the reader with some perspectives about its novel functionalizations and applications.

9.
Polymers (Basel) ; 14(17)2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36080605

RESUMO

Fused Granular Fabrication (FGF) or screw-extrusion based 3D printing for polymers is a less diffused alternative to filament-based Additive Manufacturing (AM). Its greatest advantage lies in superior sustainability; in fact, polymer granules can be used to directly feed an FGF printer, reducing the time, cost and energy of producing a part. Moreover, with this technology, a circular economy approach involving the use of pellets made from plastic waste can be easily implemented. Polylactic Acid (PLA) pellets were processed at different printing speeds and with different infill percentages on a customized version of a commercial Prusa i3 Plus 3D printer modified with a Mahor screw extruder. For the characterization of the 3D printed samples, rheological, thermal, mechanical and porosity analyses were carried out. In addition, the energy consumption of the 3D printer was monitored during the production of the specimens. The results showed that a higher printing speed leads to lower energy consumption, without compromising material strength, whereas a slower printing speed is preferable to increase material stiffness.

10.
Polymers (Basel) ; 14(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36145998

RESUMO

Uniformly distributed silica/epoxy nanocomposites (2 and 6 wt.% silica content) were obtained through a "solvent-free one-pot" process. The inorganic phases were obtained through "in situ" sol-gel chemistry from two precursors, tetraethyl orthosilicate (TEOS) and (3-aminopropyl)-triethoxysilane (APTES). APTES acts as a coupling agent. Surprisingly when changing TEOS/APTES molar ratio (from 2.32 to 1.25), two opposite trends of glass transformation temperature (Tg) were observed for silica loading, i.e., at lower content, a decreased Tg (for 2 wt.% silica) and at higher content an increased Tg (for 6 wt.% silica) was observed. High-Resolution Transmission Electron Microscopy (HRTEM) showed the formation of multi-sheet silica-based nanoparticles with decreasing size at a lower TEOS/APTES molar ratio. Based on a recently proposed mechanism, the experimental results can be explained by the formation of a co-continuous hybrid network due to reorganization of the epoxy matrix around two different "in situ" sol-gel derived silicatic phases, i.e., micelles formed mainly by APTES and multi-sheet silica nanoparticles. Moreover, the concentration of APTES affected the size distribution of the multi-sheet silica-based nanoparticles, leading to the formation of structures that became smaller at a higher content. Flammability and forced-combustion tests proved that the nanocomposites exhibited excellent fire retardancy.

11.
Polymers (Basel) ; 14(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35746082

RESUMO

"Biochar" (BC) is the solid residue recovered from the thermal cracking of biomasses in an oxygen-poor atmosphere. Recently, BC has been increasingly explored as a sustainable, inexpensive, and viable alternative to traditional carbonaceous fillers for the development of polymer-based composites. In fact, BC exhibits high thermal stability, high surface area, and electrical conductivity; moreover, its main properties can be properly tuned by controlling the conditions of the production process. Due to its intriguing characteristics, BC is currently in competition with high-performing fillers in the formulation of multi-functional polymer-based composites, inducing both high mechanical and electrical properties. Moreover, BC can be derived from a huge variety of biomass sources, including post-consumer agricultural wastes, hence providing an interesting opportunity toward a "zero waste" circular bioeconomy. This work aims at providing a comprehensive overview of the main achievements obtained by combining BC with several thermoplastic and thermosetting matrices. In particular, the effect of the introduction of BC on the overall performance of different polymer matrices will be critically reviewed, highlighting the influence of differently synthesized BC on the final performance and behavior of the resulting composites. Lastly, a comparative perspective on BC with other carbonaceous fillers will be also provided.

12.
Polymers (Basel) ; 14(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35567055

RESUMO

Stereolithography (SLA), one of the seven different 3D printing technologies, uses photosensitive resins to create high-resolution parts. Although SLA offers many advantages for medical applications, the lack of biocompatible and biobased resins limits its utilization. Thus, the development of new materials is essential. This work aims at designing, developing, and fully characterizing a bio-resin system (made of poly(ethylene glycol) diacrylate (PEGDA) and acrylated epoxidized soybean oil (AESO)), filled with micro- or nanocellulose crystals (MCC and CNC), suitable for 3D printing. The unfilled resin system containing 80 wt.% AESO was identified as the best resin mixture, having a biobased content of 68.8%, while ensuring viscosity values suitable for the 3D printing process (>1.5 Pa s). The printed samples showed a 93% swelling decrease in water, as well as increased tensile strength (4.4 ± 0.2 MPa) and elongation at break (25% ± 2.3%). Furthermore, the incorporation of MCC and CNC remarkably increased the tensile strength and Young's modulus of the cured network, thus indicating a strong reinforcing effect exerted by the fillers. Lastly, the presence of the fillers did not affect the UV-light penetration, and the printed parts showed a high quality, thus proving their potential for precise applications.

13.
Polymers (Basel) ; 14(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35567068

RESUMO

In this work, we thoroughly investigate the effects of the incorporation of a phosphate glass micrometric powder on the morphology, as well as on the thermal, optical, mechanical and flame retardant properties of UV-LED curable acrylic films. To this aim, the filler loading was changed within 10 and 50 wt.%. UV-LED initiated curing was selected as a fast and reliable system, as the standard UV-curing process was not suitable because of the presence of the glass powder that decreased the quantum efficiency during the UV exposure, hence preventing the transformation of the liquid system into a solid network. The glass powder slightly increased the glass transition temperature of the acrylic network, hence showing a limited effect on the chain segments mobility; besides, increasing filler loadings were responsible for a progressive decrease of the transparency of films, irrespective of a marginal effect on their refractive index. Conversely, the presence of increasing amounts of phosphate glass improved the thermal and thermo-oxidative stability of the cured products. Besides, phosphate glass was capable of remarkably enhancing the flame retardance of the acrylic network at 50 wt.% loading, which achieved self-extinction in vertical flame spread tests (and was V-0 rated). This formulation, as assessed by forced-combustion tests, also displayed a remarkable decrease of peak of Heat Release Rate and Total Heat Release (by 44 and 33%, respectively) and of Total Smoke Release and Specific Extinction Area (by 53 and 56%, respectively). Further, the filler promoted an increase of the stiffness and surface hardness of the films, at the expense of a decrease in ductility. All these findings may justify the potential use of these composite films as flame retardant coatings for different flammable substrates.

14.
Polymers (Basel) ; 13(22)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34833321

RESUMO

The surface functionalisation of high-density polyethylene (HDPE) and HDPE/alumina-toughened zirconia (ATZ) surfaces with chitosan via electron-beam (EB) irradiation technique was exploited for preparing materials suitable for biomedical purposes. ATR-FTIR analysis and wettability measurements were employed for monitoring the surface changes after both irradiation and chitosan grafting reaction. Interestingly, the presence of ATZ loadings beyond 2 wt% influenced both the EB irradiation process and the chitosan functionalisation reaction, decreasing the oxidation of the surface and the chitosan grafting. The EB irradiation induced an increase in Young's modulus and a decrease in the elongation at the break of all analysed systems, whereas the tensile strength was not affected in a relevant way. Biological assays indicated that electrostatic interactions between the negative charges of the surface of cell membranes and the -NH3+ sites on chitosan chains promoted cell adhesion, while some oxidised species produced during the irradiation process are thought to cause a detrimental effect on the cell viability.

15.
Polymers (Basel) ; 13(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34685288

RESUMO

Polymer-processing operations with dominating elongational flow have a great relevance, especially in several relevant industrial applications. Film blowing, fiber spinning and foaming are some examples in which the polymer melt is subjected to elongational flow during processing. To gain a thorough knowledge of the material-processing behavior, the evaluation of the rheological properties of the polymers experiencing this kind of flow is fundamental. This paper reviews the main achievements regarding the processing-structure-properties relationships of polymer-based materials processed through different operations with dominating elongational flow. In particular, after a brief discussion on the theoretical features associated with the elongational flow and the differences with other flow regimes, the attention is focused on the rheological properties in elongation of the most industrially relevant polymers. Finally, the evolution of the morphology of homogeneous polymers, as well as of multiphase polymer-based systems, such as blends and micro- and nano-composites, subjected to the elongational flow is discussed, highlighting the potential and the unique characteristics of the processing operations based on elongation flow, as compared to their shear-dominated counterparts.

16.
Nanomaterials (Basel) ; 11(9)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34578699

RESUMO

We report on the microwave shielding efficiency of non-structural composites, where inclusions of biochar-a cost effective and eco-friendly material-are dispersed in matrices of interest for building construction. We directly measured the complex permittivity of raw materials and composites, in the frequency range 100 MHz-8 GHz. A proper permittivity mixing formula allows obtaining other combinations, to enlarge the case studies. From complex permittivity, finally, we calculated the shielding efficiency, showing that tailoring the content of biochar allows obtaining a desired value of electromagnetic shielding, potentially useful for different applications. This approach represents a quick preliminary evaluation tool to design composites with desired shielding properties starting from physical parameters.

17.
Polymers (Basel) ; 13(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806333

RESUMO

In this work, bionanocomposites based on different biodegradable polymers and two types of nanofillers, namely a nanosized calcium carbonate and an organomodified nanoclay, were produced through melt extrusion, with the aim to evaluate the possible applications of these materials as a potential alternative to traditional fossil fuel-derived polyolefins, for the production of irrigation pipes. The rheological behavior of the formulated systems was thoroughly evaluated by exploiting different flow regimes, and the obtained results indicated a remarkable effect of the introduced nanofillers on the low-frequency rheological response, especially in nanoclay-based bionanocomposites. Conversely, the shear viscosity at a high shear rate was almost unaffected by the presence of both types of nanofillers, as well as the rheological response under nonisothermal elongational flow. In addition, the analysis of the mechanical properties of the formulated materials indicated that the embedded nanofillers increased the elastic modulus when compared to the unfilled counterparts, notwithstanding a slight decrease of the material ductility. Finally, the processing behavior of unfilled biopolymers and bionanocomposites was evaluated, allowing for selecting the most suitable material and thus fulfilling the processability requirements for pipe extrusion applications.

18.
Polymers (Basel) ; 13(7)2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33916477

RESUMO

In this work, bionanocomposites based on two different types of biopolymers belonging to the MaterBi® family and containing two kinds of modified nanoclays were compounded in a twin-screw extruder and then subjected to a film blowing process, aiming at obtaining sustainable films potentially suitable for packaging applications. The preliminary characterization of the extruded bionanocomposites allowed establishing some correlations between the obtained morphology and the material rheological and mechanical behavior. More specifically, the morphological analysis showed that, regardless of the type of biopolymeric matrix, a homogeneous nanofiller dispersion was achieved; furthermore, the established biopolymer/nanofiller interactions caused a restrain of the dynamics of the biopolymer chains, thus inducing a significant modification of the material rheological response, which involves the appearance of an apparent yield stress and the amplification of the elastic feature of the viscoelastic behavior. Besides, the rheological characterization under non-isothermal elongational flow revealed a marginal effect of the embedded nanofillers on the biopolymers behavior, thus indicating their suitability for film blowing processing. Additionally, the processing behavior of the bionanocomposites was evaluated and compared to that of similar systems based on a low-density polyethylene matrix: this way, it was possible to identify the most suitable materials for film blowing operations. Finally, the assessment of the mechanical properties of the produced blown films documented the potential exploitation of the selected materials for packaging applications, also at an industrial level.

19.
Polymers (Basel) ; 13(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924477

RESUMO

In this work, three biochars, deriving from soft wood, oil seed rape, and rice husk and differing as far as the ash content is considered (2.3, 23.4, and 47.8 wt.%, respectively), were compounded in an ethylene vinyl acetate copolymer (vinyl acetate content: 19 wt.%), using a co-rotating twin-screw extruder; three loadings for each biochar were selected, namely 15, 20, and 40 wt.%. The thermal and mechanical properties were thoroughly investigated, as well as the flame retardance of the resulting compounds. In particular, biochar, irrespective of the type, slowed down the crystallization of the copolymer: this effect increased with increasing the filler loading. Besides, despite a very limited effect in flammability tests, the incorporation of biochar at increasing loadings turned out to enhance the forced-combustion behavior of the compounds, as revealed by the remarkable decrease of peak of heat release rate and of total heat release, notwithstanding a significant increase of the residues at the end of the tests. Finally, increasing the biochar loadings promoted an increase of the stiffness of the resulting compounds, as well as a decrease of their ductility with respect to unfilled ethylene vinyl acetate (EVA), without impacting too much on the overall mechanical behavior of the copolymer. The obtained results seem to indicate that biochar may represent a possible low environmental impact alternative to the already used flame retardants for EVA, providing a good compromise between enhanced fire resistance and acceptable mechanical properties.

20.
Polymers (Basel) ; 13(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467704

RESUMO

The rheological behavior of an epoxidized natural rubber (ENR) nanocomposite containing 10 wt.% of silica particles was examined by time-resolved mechanical spectroscopy (TRMS), exploiting the unique capability of this technique for monitoring the time-dependent characteristics of unstable polymer melts. The resulting storage modulus curve has revealed a progressive evolution of the elastic component of the composite, associated with slower relaxations of the ENR macromolecular chains. Two major events were identified and quantified: one is associated with the absorption of the epoxidized rubber macromolecules onto the silica surface, which imposes further restrictions on the motions of the chains within the polymer phase; the second is related to gelation and the subsequent changes in rheological behavior resulting from the simultaneous occurrence cross-linking and chain scission reactions within the ENR matrix. These were quantified using two parameters related to changes in the storage and loss modulus components.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...