Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 336: 457-468, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34214596

RESUMO

The generation of acylated impurities has represented an important hurdle in the development of long acting injectables for therapeutic peptides using biocompatible polymers with a polyester moiety. We investigated here an in situ forming depot (ISFD) technology that uses polyethylene glycol - polyester copolymers and a solvent exchange mechanism to promote depot formation. This technology has shown promise in formulating small molecules as well as therapeutic proteins. In the present work, using the well-known somatostatin analog octreotide acetate (OctAc) as a model molecule, we evaluated this delivery platform to release therapeutic peptides. Peptide acylation was found to be pronounced in the formulation, while it was very limited once the depot was formed and during the release process. The octreotide acylation pattern was fully characterized by LC-MS/MS. Moreover, it was demonstrated that exchanging the acetate anion with more hydrophobic counterions like pamoate or lauryl sulfate allowed to greatly improve the peptide stability profile, as well as the formulation release performance. Finally, the in vivo evaluation through pharmacokinetics studies in rat of these new octreotide salts in ISFD formulations showed that octreotide was quantifiable up to four weeks post-administration with a high bioavailability and an acceptable initial burst.


Assuntos
Octreotida , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida , Cinética , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Tecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...