Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Haptics ; PP2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37307180

RESUMO

This paper presents a 4-degrees-of-freedom (4-DoF) hand wearable haptic device for Virtual Reality (VR). It is designed to support different end-effectors, that can be easily exchanged so as to provide a wide range of haptic sensations. The device is composed of a static upper body, secured to the back of the hand, and the (changeable) end-effector, placed in contact with the palm. The two parts of the device are connected by two articulated arms, actuated by four servo motors housed on the upper body and along the arms. The paper summarizes the design and kinematics of the wearable haptic device and presents a position control scheme able to actuate a broad range of end-effectors. As a proof of concept, we present and evaluate three representative end-effectors during interactions in VR, rendering the sensation of interacting (E1) with rigid slanted surfaces and sharp edges having different orientations, (E2) with curved surfaces having different curvatures, and (E3) with soft surfaces having different stiffness characteristics. A few additional end-effector designs are discussed. A human-subjects evaluation in immersive VR shows the broad applicability of the device, able to render rich interactions with a diverse set of virtual objects.

2.
Front Public Health ; 11: 979225, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36992891

RESUMO

Introduction: Social robots are accompanied by high expectations of what they can bring to society and in the healthcare sector. So far, promising assumptions have been presented about how and where social robots are most relevant. We know that the industry has used robots for a long time, but what about social uptake outside industry, specifically, in the healthcare sector? This study discusses what trends are discernible, to better understand the gap between technology readiness and adoption of interactive robots in the welfare and health sectors in Europe. Methods: An assessment of interactive robot applications at the upper levels of the Technology Readiness Level scale is combined with an assessment of adoption potential based on Rogers' theory of diffusion of innovation. Most robot solutions are dedicated to individual rehabilitation or frailty and stress. Fewer solutions are developed for managing welfare services or public healthcare. Results: The results show that while robots are ready from the technological point of view, most of the applications had a low score for demand according to the stakeholders. Discussion: To enhance social uptake, a more initiated discussion, and more studies on the connections between technology readiness and adoption and use are suggested. Applications being available to users does not mean they have an advantage over previous solutions. Acceptance of robots is also heavily dependent on the impact of regulations as part of the welfare and healthcare sectors in Europe.


Assuntos
Robótica , Robótica/métodos , Tecnologia , Europa (Continente)
3.
MethodsX ; 9: 101781, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35865186

RESUMO

This paper presents a methodology to study the contact of human fingers with surfaces based on 3D techniques. This method helps to investigate the fingertip mechanical properties which are crucial for designing haptic interfaces. The dependence of the fingertip deformation on the applied forces is obtained both with theoretical and experimental approaches. The experimental procedure is based on digital measurements by 3D optical scanners to reconstruct the geometry of the fingertip impression and on force measurements by an instrumented plate. Results highlight the force-displacement trend and can be validated with a Finite Element Model (FEM), with data from literature or with measurements at a force-strain gauge. Gross contact areas, radii and work of adhesion are also detected, and results are compared with contact models available in literature. • A sensorized plate with a thin force sensitive resistor and a dough material layer is used to measure the contact force corresponding to a specific digital imprint. • 3D indentation maps are obtained and evaluated by comparing the 3D scan model of fingertips during imprinting with the digital model of the undeformed fingers and of the imprints. • Force-displacement results can be validated by comparison with a developed FEM, a force-displacement gauge or literature outcomes.

4.
Front Robot AI ; 9: 873558, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712551

RESUMO

Grasping and dexterous manipulation remain fundamental challenges in robotics, above all when performed with multifingered robotic hands. Having simulation tools to design and test grasp and manipulation control strategies is paramount to get functional robotic manipulation systems. In this paper, we present a framework for modeling and simulating grasps in the Simulink environment, by connecting SynGrasp, a well established MATLAB toolbox for grasp simulation and analysis, and Simscape Multibody, a Simulink Library allowing the simulation of physical systems. The proposed approach can be used to simulate the grasp dynamics in Simscape, and then analyse the obtained grasps in SynGrasp. The devised functions and blocks can be easily customized to simulate different hands and objects.

5.
Front Robot AI ; 9: 862340, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35425814

RESUMO

Exoskeletons and more in general wearable mechatronic devices represent a promising opportunity for rehabilitation and assistance to people presenting with temporary and/or permanent diseases. However, there are still some limits in the diffusion of robotic technologies for neuro-rehabilitation, notwithstanding their technological developments and evidence of clinical effectiveness. One of the main bottlenecks that constrain the complexity, weight, and costs of exoskeletons is represented by the actuators. This problem is particularly evident in devices designed for the upper limb, and in particular for the hand, in which dimension limits and kinematics complexity are particularly challenging. This study presents the design and prototyping of a hand finger exoskeleton. In particular, we focus on the design of a gear-based differential mechanism aimed at coupling the motion of two adjacent fingers and limiting the complexity and costs of the system. The exoskeleton is able to actuate the flexion/extension motion of the fingers and apply bidirectional forces, that is, it is able to both open and close the fingers. The kinematic structure of the finger actuation system has the peculiarity to present three DoFs when the exoskeleton is not worn and one DoF when it is worn, allowing better adaptability and higher wearability. The design of the gear-based differential is inspired by the mechanism widely used in the automotive field; it allows actuating two fingers with one actuator only, keeping their movements independent.

6.
Sci Rep ; 12(1): 296, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997155

RESUMO

The act of handwriting affected the evolutionary development of humans and still impacts the motor cognition of individuals. However, the ubiquitous use of digital technologies has drastically decreased the number of times we really need to pick a pen up and write on paper. Nonetheless, the positive cognitive impact of handwriting is widely recognized, and a possible way to merge the benefits of handwriting and digital writing is to use suitable tools to write over touchscreens or graphics tablets. In this manuscript, we focus on the possibility of using the hand itself as a writing tool. A novel hand posture named FingerPen is introduced, and can be seen as a grasp performed by the hand on the index finger. A comparison with the most common posture that people tend to assume (i.e. index finger-only exploitation) is carried out by means of a biomechanical model. A conducted user study shows that the FingerPen is appreciated by users and leads to accurate writing traits.


Assuntos
Gráficos por Computador , Mãos/fisiologia , Escrita Manual , Postura , Smartphone , Interface Usuário-Computador , Adolescente , Adulto , Fenômenos Biomecânicos , Cognição , Ergonomia , Humanos , Pessoa de Meia-Idade , Modelos Teóricos , Atividade Motora , Adulto Jovem
8.
Front Robot AI ; 8: 706627, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557524

RESUMO

This study describes the main design and prototyping steps of a novel haptic device for cutaneous stimulus of a hand palm. This part of the hand is fundamental in several grasping and manipulation tasks, but is still less exploited in haptics applications than other parts of the hand, as for instance the fingertips. The proposed device has a parallel tendon-based mechanical structure and is actuated by three motors positioned on the hand's back. The device is able to apply both normal and tangential forces and to render the contact with surfaces with different slopes. The end-effector can be easily changed to simulate the contact with different surface curvatures. The design is inspired by a smaller device previously developed for the fingertips; however, in the device presented in this study, there are significant differences due to the wider size, the different form-factor, and the structure of hand palm. The hand palm represents the support for the fingers and is connected to the arm through the wrist. The device has to be developed taking into account fingers' and wrist's motions, and this requirement constrains the number of actuators and the features of the transmission system. The larger size of the palm and the higher forces challenge the device from a structural point of view. Since tendons can apply only tensile forces, a spring-based support has been developed to keep the end-effector separated from the palm when the device is not actuated or when the force to be rendered is null. The study presents the main design guidelines and the main features of the proposed device. A prototype has been realized for the preliminary tests, and an application scenario with a VR environment is introduced.

9.
IEEE Trans Haptics ; 14(2): 266-272, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33905337

RESUMO

The size and shape of fingertips vary significantly across humans, making it challenging to design wearable fingertip interfaces suitable for everyone. Although deemed important, this issue has often been neglected due to the difficulty of customizing devices for each different user. This article presents an innovative approach for automatically adapting the hardware design of a wearable haptic interface for a given user. We consider a three-DoF fingertip cutaneous device, composed of a static body and a mobile platform linked by three articulated legs. The mobile platform is capable of making and breaking contact with the finger pulp and re-angle to replicate contacts with arbitrarily-oriented surfaces. We analyze the performance of this device as a function of its main geometrical dimensions. Then, starting from the user's fingertip characteristics, we define a numerical procedure that best adapts the dimension of the device to: (i) maximize the range of renderable haptic stimuli; (ii) avoid unwanted contacts between the device and the skin; (iii) avoid singular configurations; and (iv) minimize the device encumbrance and weight. Together with the mechanical analysis and evaluation of the adapted design, we present a MATLAB script that calculates the device dimensions customized for a target fingertip as well as an online CAD utility for generating a ready-to-print STL file of the personalized design.


Assuntos
Tato , Dispositivos Eletrônicos Vestíveis , Adaptação Fisiológica , Desenho de Equipamento , Dedos , Humanos
10.
Front Robot AI ; 6: 135, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33501150

RESUMO

This paper presents a method to grasp objects that cannot be picked directly from a table, using a soft, underactuated hand. These grasps are achieved by dragging the object to the edge of a table, and grasping it from the protruding part, performing so-called slide-to-edge grasps. This type of approach, which uses the environment to facilitate the grasp, is named Environmental Constraint Exploitation (ECE), and has been shown to improve the robustness of grasps while reducing the planning effort. The paper proposes two strategies, namely Continuous Slide and Grasp and Pivot and Re-Grasp, that are designed to deal with different objects. In the first strategy, the hand is positioned over the object and assumed to stick to it during the sliding until the edge, where the fingers wrap around the object and pick it up. In the second strategy, instead, the sliding motion is performed using pivoting, and thus the object is allowed to rotate with respect to the hand that drags it toward the edge. Then, as soon as the object reaches the desired position, the hand detaches from the object and moves to grasp the object from the side. In both strategies, the hand positioning for grasping the object is implemented using a recently proposed functional model for soft hands, the closure signature, whereas the sliding motion on the table is executed by using a hybrid force-velocity controller. We conducted 320 grasping trials with 16 different objects using a soft hand attached to a collaborative robot arm. Experiments showed that the Continuous Slide and Grasp is more suitable for small objects (e.g., a credit card), whereas the Pivot and Re-Grasp performs better with larger objects (e.g., a big book). The gathered data were used to train a classifier that selects the most suitable strategy to use, according to the object size and weight. Implementing ECE strategies with soft hands is a first step toward their use in real-world scenarios, where the environment should be seen more as a help than as a hindrance.

11.
IEEE Trans Haptics ; 11(1): 39-50, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28945602

RESUMO

We present a novel three Revolute-Revolute-Spherical (3RRS) wearable fingertip device for the rendering of stiffness information. It is composed of a static upper body and a mobile end-effector. The upper body is located on the nail side of the finger, supporting three small servo motors, and the mobile end-effector is in contact with the finger pulp. The two parts are connected by three articulated legs, actuated by the motors. The end-effector can move toward the user's fingertip and rotate it to simulate contacts with arbitrarily-oriented surfaces. Moreover, a vibrotactile motor placed below the end-effector conveys vibrations to the fingertip. The proposed device weights 25 g for 35 x 50 x 48 mm dimensions. To test the effectiveness of our wearable haptic device and its level of wearability, we carried out two experiments, enrolling 30 human subjects in total. The first experiment tested the capability of our device in differentiating stiffness information, while the second one focused on evaluating its applicability in an immersive virtual reality scenario. Results showed the effectiveness of the proposed wearable solution, with a JND for stiffness of 208.5   17.2 N/m. Moreover, all subjects preferred the virtual interaction experience when provided with wearable cutaneous feedback, even if results also showed that subjects found our device still a bit difficult to use.


Assuntos
Sistemas Homem-Máquina , Tato , Interface Usuário-Computador , Dispositivos Eletrônicos Vestíveis , Adulto , Fenômenos Biomecânicos , Desenho de Equipamento , Feminino , Dedos , Humanos , Masculino , Estimulação Física , Vibração , Adulto Jovem
12.
IEEE Trans Haptics ; 10(2): 254-264, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27775909

RESUMO

Novel wearable tactile interfaces offer the possibility to simulate tactile interactions with virtual environments directly on our skin. But, unlike kinesthetic interfaces, for which haptic rendering is a well explored problem, they pose new questions about the formulation of the rendering problem. In this work, we propose a formulation of tactile rendering as an optimization problem, which is general for a large family of tactile interfaces. Based on an accurate simulation of contact between a finger model and the virtual environment, we pose tactile rendering as the optimization of the device configuration, such that the contact surface between the device and the actual finger matches as close as possible the contact surface in the virtual environment. We describe the optimization formulation in general terms, and we also demonstrate its implementation on a thimble-like wearable device. We validate the tactile rendering formulation by analyzing its force error, and we show that it outperforms other approaches.


Assuntos
Modelos Biológicos , Percepção do Tato , Tato , Interface Usuário-Computador , Realidade Virtual , Desenho de Equipamento , Dedos , Humanos , Estimulação Física , Processamento de Sinais Assistido por Computador , Dispositivos Eletrônicos Vestíveis
13.
IEEE Trans Haptics ; 8(4): 356-70, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26011868

RESUMO

In this paper, we present a study concerning the human hand during digital handwriting on a tablet. Two different cases are considered: writing with the finger, and writing with the stylus. We chose an approach based on the biomechanics of the human hand to compare the two different input methods. Performance is evaluated using metrics originally introduced and developed in robotics, such as the manipulability indexes. Analytical results assess that writing with the finger is more suitable for performing large, but not very accurate motions, while writing with the stylus leads to a higher precision and more isotropic motion performance. We then carried out two experiments of digital handwriting to support the approach and contextualize the results.


Assuntos
Computadores , Dedos , Escrita Manual , Destreza Motora , Adulto , Fenômenos Biomecânicos , Simulação por Computador , Feminino , Dedos/anatomia & histologia , Dedos/fisiologia , Humanos , Masculino , Modelos Biológicos , Movimento (Física) , Destreza Motora/fisiologia , Tempo , Punho/anatomia & histologia , Punho/fisiologia , Adulto Jovem
14.
IEEE Trans Haptics ; 6(1): 106-16, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24808272

RESUMO

A technique to animate a realistic hand avatar with 20 DoFs based on the biomechanics of the human hand is presented. The animation does not use any sensor glove or advanced tracker with markers. The proposed approach is based on the knowledge of a set of kinematic constraints on the model of the hand, referred to as postural synergies, which allows to represent the hand posture using a number of variables lower than the number of joints of the hand model. This low-dimensional set of parameters is estimated from direct measurement of the motion of thumb and index finger tracked using two haptic devices. A kinematic inversion algorithm has been developed, which takes synergies into account and estimates the kinematic configuration of the whole hand, i.e., also of the fingers whose end tips are not directly tracked by the two haptic devices. The hand skin is deformable and its deformation is computed using a linear vertex blending technique. The proposed synergy-based animation of the hand avatar involves only algebraic computations and is suitable for real-time implementation as required in haptics.


Assuntos
Simulação por Computador , Mãos/fisiologia , Modelos Biológicos , Postura/fisiologia , Algoritmos , Fenômenos Biomecânicos/fisiologia , Dedos/fisiologia , Articulação da Mão/fisiologia , Humanos , Movimento (Física)
15.
IEEE Trans Haptics ; 6(4): 506-16, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24808402

RESUMO

Wearability will significantly increase the use of haptics in everyday life, as has already happened for audio and video technologies. The literature on wearable haptics is mainly focused on vibrotactile stimulation, and only recently, wearable devices conveying richer stimuli, like force vectors, have been proposed. This paper introduces design guidelines for wearable haptics and presents a novel 3-DoF wearable haptic interface able to apply force vectors directly to the fingertip. It consists of two platforms: a static one, placed on the back of the finger, and a mobile one, responsible for applying forces at the finger pad. The structure of the device resembles that of parallel robots, where the fingertip is placed in between the static and the moving platforms. This work presents the design of the wearable display, along with the quasi-static modeling of the relationship between the applied forces and the platform's orientation and displacement. The device can exert up to 1.5 N, with a maximum platform inclination of 30 degree. To validate the device and verify its effectiveness, a curvature discrimination experiment was carried out: employing the wearable device together with a popular haptic interface improved the performance with respect of employing the haptic interface alone.


Assuntos
Retroalimentação , Dedos/fisiologia , Robótica/instrumentação , Tato/fisiologia , Interface Usuário-Computador , Adulto , Algoritmos , Fenômenos Biomecânicos , Computadores , Feminino , Humanos , Masculino , Análise e Desempenho de Tarefas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...