Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Rep ; 37: 101643, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38298211

RESUMO

The members of DHH superfamily have been reported with diverse substrate spectrum and play pivotal roles in replication, repair, and RNA metabolism. This family comprises phosphatases, phosphoesterase and bifunctional enzymes having nanoRNase and phosphatase activities. Cell cycle factor Cdc45, a member of this superfamily, is crucial for movement of the replication fork during DNA replication and an important component of the replisome. The specific protein-protein interactions of Cdc45 with other factors along with helicase moderate the faithful DNA replication process. However, the exact biochemical functions of this factor are still unknown and need further investigation. Here, we studied the biochemical roles of Cdc45 and its molecular interactions within the replisomal complex. The alteration in the level of protein, observed when DNA damage is induced in-vivo, suggests its association with DNA replication stress. We analyzed protein Cdc45, providing new insights about the molecular and biochemical functionality of this replisomal factor.

2.
Neuron ; 110(9): 1483-1497.e7, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35263617

RESUMO

Vesicular transporters (VTs) define the type of neurotransmitter that synaptic vesicles (SVs) store and release. While certain mammalian neurons release multiple transmitters, it is not clear whether the release occurs from the same or distinct vesicle pools at the synapse. Using quantitative single-vesicle imaging, we show that a vast majority of SVs in the rodent brain contain only one type of VT, indicating specificity for a single neurotransmitter. Interestingly, SVs containing dual transporters are highly diverse (27 types) but small in proportion (2% of all SVs), excluding the largest pool that carries VGLUT1 and ZnT3 (34%). Using VGLUT1-ZnT3 SVs, we demonstrate that the transporter colocalization influences the SV content and synaptic quantal size. Thus, the presence of diverse transporters on the same vesicle is bona fide, and depending on the VT types, this may act to regulate neurotransmitter type, content, and release in space and time.


Assuntos
Proteínas de Transporte de Neurotransmissores , Vesículas Sinápticas , Animais , Mamíferos , Proteínas de Membrana Transportadoras , Neurotransmissores , Sinapses , Vesículas Sinápticas/fisiologia , Proteína Vesicular 1 de Transporte de Glutamato
3.
Biology (Basel) ; 11(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35053017

RESUMO

ZIP9 is a recently identified membrane-bound androgen receptor of physiological significance that may mediate certain physiological responses to androgens. Using in silico methods, six tetrapeptides with the best docking properties at the testosterone binding site of ZIP9 were synthesized and further investigated. All tetrapeptides displaced T-BSA-FITC, a membrane-impermeable testosterone analog, from the surface of mouse myogenic L6 cells that express ZIP9 but not the classical androgen receptor (AR). Silencing the expression of ZIP9 with siRNA prevented this labeling. All tetrapeptides were found to be pro-androgenic; in L6 cells they stimulated the expression of myogenin, triggered activation of focal adhesion kinase, and prompted the fusion of L6 myocytes to syncytial myotubes. In human osteoblastic SAOS-2 cells that express AR and ZIP9, they reduced the expression of alkaline phosphatase and stimulated mineralization. These latter effects were prevented by silencing ZIP9 expression, indicating that the osteoblast/osteocyte conversion is exclusively mediated through ZIP9. Our results demonstrate that the synthetic tetrapeptides, by acting as ZIP9-specific androgens, have the potential to replace testosterone or testosterone analogs in the treatment of bone- or muscle-related disorders by circumventing the undesirable effects mediated through the classical AR.

4.
Proc Natl Acad Sci U S A ; 116(25): 12275-12284, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31160466

RESUMO

Multidrug and toxic compound extrusion (MATE) transporters mediate excretion of xenobiotics and toxic metabolites, thereby conferring multidrug resistance in bacterial pathogens and cancer cells. Structural information on the alternate conformational states and knowledge of the detailed mechanism of MATE transport are of great importance for drug development. However, the structures of MATE transporters are only known in V-shaped outward-facing conformations. Here, we present the crystal structure of a MATE transporter from Pyrococcus furiosus (PfMATE) in the long-sought-after inward-facing state, which was obtained after crystallization in the presence of native lipids. Transition from the outward-facing state to the inward-facing state involves rigid body movements of transmembrane helices (TMs) 2-6 and 8-12 to form an inverted V, facilitated by a loose binding of TM1 and TM7 to their respective bundles and their conformational flexibility. The inward-facing structure of PfMATE in combination with the outward-facing one supports an alternating access mechanism for the MATE family transporters.


Assuntos
Resistência a Múltiplos Medicamentos , Proteínas de Membrana Transportadoras/química , Conformação Proteica , Pyrococcus furiosus/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Pyrococcus furiosus/efeitos dos fármacos , Difração de Raios X
5.
J Steroid Biochem Mol Biol ; 182: 50-61, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29684479

RESUMO

Although dehydroepiandrosterone sulfate (DHEAS) constitutes the most abundant steroid in humans, in-depth investigations of its effects are rather scarce. We address here DHEAS effects on the estrogen receptor-positive metastatic human breast cancer cell line MCF-7. We focus on DHEAS-mediated signaling that might influence expression of claudin-1 and matrix metalloproteinase-9 (MMP-9), both known to be critical factors for migration and invasiveness of various cancers, including breast cancer cells. Physiological concentrations of DHEAS trigger persistent phosphorylation of Erk1/2 in MCF-7 cells. Exposure of these cells for 24 h to 1 µM DHEAS also leads to a significant reduction of claudin-1 expression that cannot be prevented by high concentrations of the steroid sulfatase inhibitor STX64, indicating that desulfation and further conversion of DHEAS to some other steroid hormone is not required for this action. In addition, exposure of MCF-7 cells to the same concentration of DHEAS completely abolishes MMP-9 expression and considerably impairs cell migratory behavior. Abrogation of Gnα11 expression by siRNA prevents the stimulatory effect of DHEAS on Erk1/2 phosphorylation, consistent with a G-protein-coupled receptor being involved in the DHEAS-induced signaling. Nevertheless, Gnα11 also has direct effects that do not depend on DHEAS; thus, when Gnα11 expression is suppressed, expression of claudin-1 and MMP-9 as well as cell migration are significantly reduced. This is the first report demonstrating direct involvement of DHEAS and Gnα11 in the regulation of claudin-1 and MMP-9 expression and migration of MCF-7 cells.


Assuntos
Neoplasias da Mama/patologia , Movimento Celular/efeitos dos fármacos , Claudina-1/metabolismo , Sulfato de Desidroepiandrosterona/farmacologia , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Metaloproteinase 9 da Matriz/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Claudina-1/genética , Feminino , Subunidades alfa de Proteínas de Ligação ao GTP/antagonistas & inibidores , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Humanos , Células MCF-7 , Metaloproteinase 9 da Matriz/genética , Fosforilação , RNA Interferente Pequeno/genética , Transdução de Sinais
6.
Methods Mol Biol ; 1700: 3-24, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29177822

RESUMO

X-ray crystallography is still the most prominent technique in use to decipher the 3D structures of membrane proteins. For successful crystallization, sample quality is the most important parameter that should be addressed. In almost every case, highly pure, monodisperse, and stable protein sample is a prerequisite. Vapor diffusion is in general the method of choice for obtaining crystals. Here, we discuss a detailed protocol for overproduction and purification of the inner-membrane multidrug transporter AcrB and of DARPins, which are used for crystallization of the AcrB/DARPin complex, resulting in high-resolution diffraction and subsequent structure determination.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Repetição de Anquirina , Cromatografia de Afinidade , Cromatografia em Gel/instrumentação , Cristalografia por Raios X/instrumentação , Modelos Moleculares , Complexos Multiproteicos/química , Ligação Proteica , Conformação Proteica
7.
Biochim Biophys Acta Mol Cell Res ; 1864(12): 2402-2414, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28943399

RESUMO

ZIP9 is a Zn2+ transporter, testosterone receptor, and mediator of signaling events through G-proteins. Despite these pivotal properties, however, its physiological and pathophysiological significance has not yet been comprehensively addressed. Using a cell line that lacks the classical androgen receptor we show that ZIP9-mediated phosphorylation of Erk1/2, CREB, or ATF-1 and expression of claudin-5 and zonula occludens-1 by testosterone can be completely antagonized by bicalutamide (Casodex), an anti-androgen of significant clinical impact. Computational modeling and docking experiments with ZIP9 reveal typical characteristics of ZIP transporters and an extracellular binding site for testosterone capable of accommodating bicalutamide. The presence of this site is verified by our demonstration that the membrane-impermeable testosterone analogue T-BSA-FITC labels the membrane only when ZIP9 is expressed and that this labeling is completely prevented by bicalutamide. The study connects structural features of ZIP9 to its functions and indicates a possible relevance of ZIP9 as a pharmacological target.


Assuntos
Androgênios/química , Apoptose/efeitos dos fármacos , Proteínas de Transporte de Cátions/química , Receptores Androgênicos/genética , Androgênios/genética , Androgênios/metabolismo , Anilidas/antagonistas & inibidores , Anilidas/química , Sítios de Ligação/efeitos dos fármacos , Proteínas de Transporte de Cátions/genética , Humanos , Masculino , Simulação de Acoplamento Molecular , Nitrilas/antagonistas & inibidores , Nitrilas/química , Fosforilação/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Receptores Androgênicos/química , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Testosterona/antagonistas & inibidores , Testosterona/química , Compostos de Tosil/antagonistas & inibidores , Compostos de Tosil/química
8.
J Biol Chem ; 291(30): 15503-14, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27235402

RESUMO

Multidrug and toxic compound extrusion (MATE) transporters exist in all three domains of life. They confer multidrug resistance by utilizing H(+) or Na(+) electrochemical gradients to extrude various drugs across the cell membranes. The substrate binding and the transport mechanism of MATE transporters is a fundamental process but so far not fully understood. Here we report a detailed substrate binding study of NorM_PS, a representative MATE transporter from Pseudomonas stutzeri Our results indicate that NorM_PS is a proton-dependent multidrug efflux transporter. Detailed binding studies between NorM_PS and 4',6-diamidino-2-phenylindole (DAPI) were performed by isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC), and spectrofluorometry. Two exothermic binding events were observed from ITC data, and the high-affinity event was directly correlated with the extrusion of DAPI. The affinities are about 1 µm and 0.1 mm for the high and low affinity binding, respectively. Based on our homology model of NorM_PS, variants with mutations of amino acids that are potentially involved in substrate binding, were constructed. By carrying out the functional characterization of these variants, the critical amino acid residues (Glu-257 and Asp-373) for high-affinity DAPI binding were determined. Taken together, our results suggest a new substrate-binding site for MATE transporters.


Assuntos
Proteínas de Bactérias/química , Proteínas de Transporte/química , Farmacorresistência Bacteriana Múltipla , Indóis/química , Pseudomonas stutzeri/química , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Indóis/metabolismo , Mutação de Sentido Incorreto , Pseudomonas stutzeri/genética , Pseudomonas stutzeri/metabolismo
9.
J Biol Chem ; 289(3): 1377-87, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24257746

RESUMO

Membrane proteins of the amino acid-polyamine-organocation (APC) superfamily transport amino acids and amines across membranes and play an important role in the regulation of cellular processes. We report the heterologous production of the LysP-related transporter STM2200 from Salmonella typhimurium in Escherichia coli, its purification, and functional characterization. STM2200 is assumed to be a proton-dependent APC transporter of L-lysine. The functional interaction between basic amino acids and STM2200 was investigated by thermoanalytical methods, i.e. differential scanning and isothermal titration calorimetry. Binding of L-lysine to STM2200 in its solubilized monomer form is entropy-driven. It is characterized by a dissociation constant of 40 µm at pH 5.9 and is highly selective; no evidence was found for the binding of L-arginine, L-ornithine, L-2,4-diaminobutyric acid, and L-alanine. D-lysine is bound 45 times more weakly than its L-chiral form. We thus postulate that STM2200 functions as a specific transport protein. Based on the crystal structure of ApcT (Shaffer, P. L., Goehring, A., Shankaranarayanan, A., and Gouaux, E. (2009) Science 325, 1010-1014), a proton-dependent amino acid transporter of the APC superfamily, a homology model of STM2200 was created. Docking studies allowed identification of possible ligand binding sites. The resulting predictions indicated that Glu-222 and Arg-395 of STM2200 are markedly involved in ligand binding, whereas Lys-163 is suggested to be of structural and functional relevance. Selected variants of STM2200 where these three amino acid residues were substituted using single site-directed mutagenesis showed no evidence for L-lysine binding by isothermal titration calorimetry, which confirmed the predictions. Molecular aspects of the observed ligand specificity are discussed.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/química , Proteínas de Bactérias/química , Simulação de Acoplamento Molecular , Salmonella typhimurium/química , Substituição de Aminoácidos , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Lisina/química , Lisina/genética , Lisina/metabolismo , Mutação de Sentido Incorreto , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Homologia Estrutural de Proteína , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...