Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hippocampus ; 33(4): 360-372, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36880417

RESUMO

There is still limited mechanistic insight into how the interaction of individuals with their environment results in the emergence of individuality in behavior and brain structure. Nevertheless, the idea that personal activity shapes the brain is implicit in strategies for healthy cognitive aging as well as in the idea that individuality is reflected in the brain's connectome. We have shown that even isogenic mice kept in a shared enriched environment (ENR) developed divergent and stable social and exploratory trajectories. As these trajectories-measured as roaming entropy (RE)-positively correlated with adult hippocampal neurogenesis, we hypothesized that a feedback between behavioral activity and adult hippocampal neurogenesis might be a causal factor in brain individualization. We used cyclin D2 knockout mice with constitutively extremely low levels of adult hippocampal neurogenesis and their wild-type littermates. We housed them for 3 months in a novel ENR paradigm, consisting of 70 connected cages equipped with radio frequency identification antennae for longitudinal tracking. Cognitive performance was evaluated in the Morris Water Maze task (MWM). With immunohistochemistry we confirmed that adult neurogenesis correlated with RE in both genotypes and that D2 knockout mice had the expected impaired performance in the reversal phase of the MWM. But whereas the wild-type animals developed stable exploratory trajectories with increasing variance, correlating with adult neurogenesis, this individualizing phenotype was absent in D2 knockout mice. Here the behaviors started out more random and revealed less habituation and low variance. Together, these findings suggest that adult neurogenesis contributes to experience-dependent brain individualization.


Assuntos
Hipocampo , Neurogênese , Camundongos , Animais , Camundongos Knockout , Ciclina D2/genética , Aprendizagem em Labirinto , Neurogênese/genética , Camundongos Endogâmicos C57BL
2.
iScience ; 23(10): 101577, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33083743

RESUMO

Our rudimentary knowledge about rat intraspecific vocal system of information exchange is limited by experimental models of communication. Rats emit 50-kHz ultrasonic vocalizations in appetitive states and 22-kHz ones in aversive states. Both affective states influence heart rate. We propose a behavioral model employing exposure to pre-recorded playbacks in home-cage-like conditions. Fifty-kHz playbacks elicited the most vocalizations (>60 calls per minute, mostly of 50-kHz type), increased heart rate, and locomotor activity. In contrast, 22-kHz playback led to abrupt decrease in heart rate and locomotor activity. Observed effects were more pronounced in singly housed rats compared with the paired housed group; they were stronger when evoked by natural playback than by corresponding artificial tones. Finally, we also observed correlations between the number of vocalizations, heart rate levels, and locomotor activity. The correlations were especially strong in response to 50-kHz playback.

3.
Front Physiol ; 9: 1972, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30697171

RESUMO

The avian pineal gland is one of three central biological clocks that contain all the components of a circadian system: a photoreceptive input, oscillator, and rhythmically secreted melatonin (MEL) as an effector. The biosynthesis of MEL is regulated by the neurotransmitters noradrenaline (NA), vasoactive intestinal peptide (VIP), and pituitary adenylate cyclase-activating polypeptide (PACAP). The aim of the present study was to characterize the daily profile of neurotransmitters and their receptors in the pineal gland of male Hy-Line chickens housed under controlled light (12:12 light:dark) conditions. The pineal glands were isolated from 16-day-old birds every 2 h over a 24-h period, immediately after decapitation. The catecholamine content was measured using HPLC with electrochemical detection, whereas expression of VIP and PACAP was measured using quantitative real-time PCR (RT-qPCR) assays and Western blotting. Expression of the neurotransmitter receptors was also measured using RT-qPCR. We found daily changes in NA content, with elevated nocturnal levels, whereas the NA receptor was expressed in antiphase. Although we did not observe daily changes in VIP and PACAP protein levels, we found prominent diurnal changes in the expression of the Vip and Pacap genes. We also detected precursors of NA, 3,4-dihydroxy-L-phenylalanine (DOPA), and dopamine (DA) in the pineal glands, in addition to the DA metabolites. Our results provide the first evidence that the pineal gland itself may synthetize the neurotransmitters needed to regulate MEL biosynthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...