Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 14(1): 3822, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37380668

RESUMO

Climate-driven changes in precipitation amounts and their seasonal variability are expected in many continental-scale regions during the remainder of the 21st century. However, much less is known about future changes in the predictability of seasonal precipitation, an important earth system property relevant for climate adaptation. Here, on the basis of CMIP6 models that capture the present-day teleconnections between seasonal precipitation and previous-season sea surface temperature (SST), we show that climate change is expected to alter the SST-precipitation relationships and thus our ability to predict seasonal precipitation by 2100. Specifically, in the tropics, seasonal precipitation predictability from SSTs is projected to increase throughout the year, except the northern Amazonia during boreal winter. Concurrently, in the extra-tropics predictability is likely to increase in central Asia during boreal spring and winter. The altered predictability, together with enhanced interannual variability of seasonal precipitation, poses new opportunities and challenges for regional water management.

3.
Water Resour Res ; 58(5): e2021WR031302, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35865123

RESUMO

Precipitation prediction at seasonal timescales is important for planning and management of water resources as well as preparedness for hazards such as floods, droughts and wildfires. Quantifying predictability is quite challenging as a consequence of a large number of potential drivers, varying antecedent conditions, and small sample size of high-quality observations available at seasonal timescales, that in turn, increases prediction uncertainty and the risk of model overfitting. Here, we introduce a generalized probabilistic framework to account for these issues and assess predictability under uncertainty. We focus on prediction of winter (Nov-Mar) precipitation across the contiguous United States, using sea surface temperature-derived indices (averaged in Aug-Oct) as predictors. In our analysis we identify "predictability hotspots," which we define as regions where precipitation is inherently more predictable. Our framework estimates the entire predictive distribution of precipitation using copulas and quantifies prediction uncertainties, while employing principal component analysis for dimensionality reduction and a cross validation technique to avoid overfitting. We also evaluate how predictability changes across different quantiles of the precipitation distribution (dry, normal, wet amounts) using a multi-category 3 × 3 contingency table. Our results indicate that well-defined predictability hotspots occur in the Southwest and Southeast. Moreover, extreme dry and wet conditions are shown to be relatively more predictable compared to normal conditions. Our study may help with water resources management in several subregions of the United States and can be used to assess the fidelity of earth system models in successfully representing teleconnections and predictability.

4.
Geophys Res Lett ; 48(12)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321701

RESUMO

The Madden-Julian Oscillation (MJO) is the leading mode of intra-seasonal climate variability, having profound impacts on a wide range of weather and climate phenomena. Here, we use a wavelet-based spectral Principal Component Analysis (wsPCA) to evaluate the skill of 20 state-of-the-art CMIP6 models in capturing the magnitude and dynamics of the MJO. By construction, wsPCA has the ability to focus on desired frequencies and capture each propagative physical mode with one principal component (PC). We show that the MJO contribution to the total intra-seasonal climate variability is substantially underestimated in most CMIP6 models. The joint distribution of the modulus and angular frequency of the wavelet PC series associated with MJO is used to rank models relatively to the observations through the Wasserstein distance. Using Hovmöller phase-longitude diagrams, we also show that precipitation variability associated with MJO is underestimated in most CMIP6 models for the Amazonia, Southwest Africa, and Maritime Continent.

5.
Nat Clim Chang ; 11: 143-151, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34163539

RESUMO

Future changes in the position of the intertropical convergence zone (ITCZ; a narrow band of heavy precipitation in the tropics) with climate change could affect the livelihood and food security of billions of people. Although models predict a future narrowing of the ITCZ, uncertainties remain large regarding its future position, with most past work focusing on zonal-mean shifts. Here we use projections from 27 state-of-the-art (CMIP6) climate models and document a robust zonally-varying ITCZ response to the SSP3-7.0 scenario by 2100, with a northward shift over eastern Africa and the Indian Ocean, and a southward shift in the eastern Pacific and Atlantic Oceans. The zonally-varying response is consistent with changes in the divergent atmospheric energy transport, and sector-mean shifts of the energy flux equator. Our analysis provides insight about mechanisms influencing the future position of the tropical rainbelt, and may allow for more robust projections of climate change impacts.

6.
J Clim ; 34(2): 715-736, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34158680

RESUMO

Spectral PCA (sPCA), in contrast to classical PCA, offers the advantage of identifying organized spatiotemporal patterns within specific frequency bands and extracting dynamical modes. However, the unavoidable trade-off between frequency resolution and robustness of the PCs leads to high sensitivity to noise and overfitting, which limits the interpretation of the sPCA results. We propose herein a simple nonparametric implementation of sPCA using the continuous analytic Morlet wavelet as a robust estimator of the cross-spectral matrices with good frequency resolution. To improve the interpretability of the results, especially when several modes of similar amplitude exist within the same frequency band, we propose a rotation of the complex-valued eigenvectors to optimize their spatial regularity (smoothness). The developed method, called rotated spectral PCA (rsPCA), is tested on synthetic data simulating propagating waves and shows impressive performance even with high levels of noise in the data. Applied to global historical geopotential height (GPH) and sea surface temperature (SST) daily time series, the method accurately captures patterns of atmospheric Rossby waves at high frequencies (3-60-day periods) in both GPH and SST and El Niño-Southern Oscillation (ENSO) at low frequencies (2-7-yr periodicity) in SST. At high frequencies the rsPCA successfully unmixes the identified waves, revealing spatially coherent patterns with robust propagation dynamics.

7.
J Clim ; 34(2): 737-754, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34045793

RESUMO

Understanding the physical drivers of seasonal hydroclimatic variability and improving predictive skill remains a challenge with important socioeconomic and environmental implications for many regions around the world. Physics-based deterministic models show limited ability to predict precipitation as the lead time increases, due to imperfect representation of physical processes and incomplete knowledge of initial conditions. Similarly, statistical methods drawing upon established climate teleconnections have low prediction skill due to the complex nature of the climate system. Recently, promising data-driven approaches have been proposed, but they often suffer from overparameterization and overfitting due to the short observational record, and they often do not account for spatiotemporal dependencies among covariates (i.e., predictors such as sea surface temperatures). This study addresses these challenges via a predictive model based on a graph-guided regularizer that simultaneously promotes similarity of predictive weights for highly correlated covariates and enforces sparsity in the covariate domain. This approach both decreases the effective dimensionality of the problem and identifies the most predictive features without specifying them a priori. We use large ensemble simulations from a climate model to construct this regularizer, reducing the structural uncertainty in the estimation. We apply the learned model to predict winter precipitation in the southwestern United States using sea surface temperatures over the entire Pacific basin, and demonstrate its superiority compared to other regularization approaches and statistical models informed by known teleconnections. Our results highlight the potential to combine optimally the space-time structure of predictor variables learned from climate models with new graph-based regularizers to improve seasonal prediction.

9.
Nat Commun ; 9(1): 2332, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29899420

RESUMO

Reliable prediction of seasonal precipitation in the southwestern US (SWUS) remains a challenge with significant implications for the economy, water security and ecosystem management of the region. Winter precipitation in the SWUS has been linked to several climate modes, including the El Niño-Southern Oscillation (ENSO), with limited predictive ability. Here we report evidence that late-summer sea surface temperature and geopotential height anomalies close to New Zealand exhibit higher correlation with SWUS winter precipitation than ENSO, enhancing the potential for earlier and more accurate prediction. The teleconnection depends on a western Pacific ocean-atmosphere pathway, whereby sea surface temperature anomalies propagate from the southern to the northern hemisphere during boreal summer. Analysis also shows an amplification of this new teleconnection over the past four decades. Our work highlights the need to understand the dynamic nature of the coupled ocean-atmosphere system in a changing climate for improving future predictions of regional precipitation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...