Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269262

RESUMO

Novel magnetic gas sensors are characterized by extremely high efficiency and low energy consumption, therefore, a search for a two-dimensional material suitable for room temperature magnetic gas sensors is a critical task for modern materials scientists. Here, we computationally discovered a novel ultrathin two-dimensional antiferromagnet V3S4, which, in addition to stability and remarkable electronic properties, demonstrates a great potential to be applied in magnetic gas sensing devices. Quantum-mechanical calculations within the DFT + U approach show the antiferromagnetic ground state of V3S4, which exhibits semiconducting electronic properties with a band gap of 0.36 eV. A study of electronic and magnetic response to the adsorption of various gas agents showed pronounced changes in properties with respect to the adsorption of NH3, NO2, O2, and NO molecules on the surface. The calculated energies of adsorption of these molecules were -1.25, -0.91, -0.59, and -0.93 eV, respectively. Obtained results showed the prospective for V3S4 to be used as effective sensing materials to detect NO2 and NO, for their capture, and for catalytic applications in which it is required to lower the dissociation energy of O2, for example, in oxygen reduction reactions. The sensing and reducing of NO2 and NO have great importance for improving environmental protection and sustainable development.

2.
J Biomol Struct Dyn ; 34(1): 201-5, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25723721

RESUMO

The melting transition of DNA-ligand complexes, allowing for two binding mechanisms to different DNA conformations is treated theoretically. The obtained results express the behavior of the experimentally measurable quantities, degree of denaturation, and concentrations of bound ligands on the temperature. The range of binding parameters is obtained, where denaturation curves become multiphasic. The possible application to the nanocomposites crystallization is discussed.


Assuntos
DNA/química , Ligantes , Conformação de Ácido Nucleico , Cristalização , Nanocompostos/química , Desnaturação de Ácido Nucleico , Temperatura
3.
J Chem Phys ; 143(1): 014102, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26156460

RESUMO

We analyze a model statistical description of the polypeptide chain helix-coil transition, where we take into account the specificity of its primary sequence, as quantified by the phase space volume ratio of the number of all accessible states to the number corresponding to a helical conformation. The resulting transition phase diagram is then juxtaposed with the unusual behavior of the secondary structures in Intrinsically Disordered Proteins (IDPs) and a number of similarities are observed, even if the protein folding is a more complex transition than the helix-coil transition. In fact, the deficit in bulky and hydrophobic amino acids observed in IDPs, translated into larger values of phase space volume, allows us to locate the region in parameter space of the helix-coil transition that would correspond to the secondary structure transformations that are intrinsic to conformational transitions in IDPs and that is characterized by a modified phase diagram when compared to globular proteins. Here, we argue how the nature of this modified phase diagram, obtained from a model of the helix-coil transition in a solvent, would illuminate the turned-out response of IDPs to the changes in the environment conditions that follow straightforwardly from the re-entrant (cold denaturation) branch in their folding phase diagram.


Assuntos
Fenômenos Biofísicos , Proteínas Intrinsicamente Desordenadas/química , Modelos Moleculares , Solventes/química , Ligação de Hidrogênio , Osmose , Estrutura Secundária de Proteína
4.
Artigo em Inglês | MEDLINE | ID: mdl-25353524

RESUMO

We analyze the problem of the helix-coil transition in explicit solvents analytically by using spin-based models incorporating two different mechanisms of solvent action: explicit solvent action through the formation of solvent-polymer hydrogen bonds that can compete with the intrinsic intra-polymer hydrogen bonded configurations (competing interactions) and implicit solvent action, where the solvent-polymer interactions tune biopolymer configurations by changing the activity of the solvent (non-competing interactions). The overall spin Hamiltonian is comprised of three terms: the background in vacuo Hamiltonian of the "Generalized Model of Polypeptide Chain" type and two additive terms that account for the two above mechanisms of solvent action. We show that on this level the solvent degrees of freedom can be explicitly and exactly traced over, the ensuing effective partition function combining all the solvent effects in a unified framework. In this way we are able to address helix-coil transitions for polypeptides, proteins, and DNA, with different buffers and different external constraints. Our spin-based effective Hamiltonian is applicable for treatment of such diverse phenomena as cold denaturation, effects of osmotic pressure on the cold and warm denaturation, complicated temperature dependence of the hydrophobic effect as well as providing a conceptual base for understanding the behavior of intrinsically disordered proteins and their analogues.


Assuntos
Biopolímeros/química , Modelos Biológicos , Modelos Químicos , Modelos Moleculares , Solventes/química , Água/química , Simulação por Computador , Ligação de Hidrogênio , Modelos Estatísticos , Conformação Molecular , Transição de Fase , Temperatura
5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(5 Pt 1): 051904, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23214811

RESUMO

The kinetics of the flux of a charged macromolecular solution through an environment of changing geometry with wide and constricted regions is investigated analytically. A model device consisting of alternating deep and shallow slits known as an "entropic trap" is used to represent the environment. The flux is supported by the external electrostatic field. The "wormlike chain" model is used for the macromolecule (dsDNA in the present study). The chain entropy in both the deep and the shallow slits, the work by the electric field, and the energy of the elastic bending of the chain are taken into account accurately. Based on the calculated free energy, the kinetics and the scaling behavior of the chain escaping from the entropic trap are studied. We find that the escape process occurs in two kinetic stages with different time scales and discuss the possible influence of the surface roughness. The scope of the accuracy of the proposed model is discussed.


Assuntos
Substâncias Macromoleculares/química , Modelos Químicos , Modelos Moleculares , Simulação por Computador , Transferência de Energia , Entropia , Eletricidade Estática
6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(3 Pt 1): 031915, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19905154

RESUMO

Motivated by measurements on stretched double-stranded DNA in the presence of multivalent cations, we develop a statistical mechanical model for the compaction of an insoluble semiflexible polymer under tension. Using a mean-field approach, we determine the order of the extended-to-compact transition and provide an interpretation for the magnitude and interval of tensions over which compaction takes place. In the simplest thermodynamic limit of an infinitely long homogeneous polymer, compaction is a first-order transition that occurs at a single value of tension. For finite length chains or for heterogeneous polymers, the transition progresses over an interval of tension. Our theory provides an interpretation for the result of single-molecule experiments in terms of microscopic parameters such as persistence length and free energy of condensation.


Assuntos
Cátions/farmacologia , DNA/química , Fenômenos Biomecânicos , Modelos Moleculares , Termodinâmica
7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(6 Pt 1): 061907, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17677300

RESUMO

We present a general thermodynamic picture of the folding of RNA-like heteropolymer based on the basic physical principles. The Hamiltonian of the model includes all characteristic interactions explicitly. A particular attention is paid to the electrostatic interactions whose role in the RNA folding is known to be crucial. In this paper we study RNA folding with the full Hamiltonian and describe the spin-glass behavior on the level of tertiary structure. We show that formation of the stable tertiary structure is possible in the random RNA-like molecule. By including into the model the nonspecific interactions of the RNA molecule with counterions, we derive the logarithmic dependencies of the melting and freezing temperatures on the ion concentration, which is consistent with experimental data [R. Shiman and D. E. Draper, J. Mol. Biol. 302, 79 (2000)]. We also infer that the large RNA folds slower than the hierarchical model predicts, which was observed in the experiments.


Assuntos
Modelos Teóricos , Conformação de Ácido Nucleico , RNA/química
8.
J Chem Phys ; 126(14): 145103, 2007 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-17444752

RESUMO

We use a replica approach to investigate the thermodynamic properties of the random heteropolymers with persistent power-law correlations in monomer sequence. We show that this type of sequences possess proteinlike properties. In particular, we show that they can fold into stable unique three-dimensional structure (the "native" structure, in protein terminology) through two different types of pathways. One is a fast folding pathway and leads directly to the native structure. Another one, a more slower pathway, passes through the microphase separated (MPS) state and includes a number of intermediate glassy states. The scale and the magnitude of the MPS are calculated. The frozen state can be reached only by sequences with weak long-range correlations. The critical value for the correlation exponent is found, above which (strong correlations) freezing is impossible.


Assuntos
Algoritmos , Materiais Biomiméticos/química , Modelos Químicos , Modelos Moleculares , Proteínas/química , Proteínas/ultraestrutura , Análise de Sequência de Proteína/métodos , Sequência de Aminoácidos , Simulação por Computador , Dados de Sequência Molecular , Conformação Proteica , Estatística como Assunto , Relação Estrutura-Atividade
9.
Biopolymers ; 75(5): 434-9, 2004 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-15468063

RESUMO

By taking into account base-base stacking interactions we improve the Generalized Model of Polypeptide Chain (GMPC). Based on a one-dimensional Potts-like model with many-particle interactions, the GMPC describes the helix-coil transition in both polypeptides and polynucleotides. In the framework of the GMPC we show that correctly introduced nearest-neighbor stacking interactions against the background of hydrogen bonding lead to increased stability (melting temperature) and, unexpectedly, to decreased cooperativity (maximal correlation length). The increase in stability is explained as due to an additional stabilizing interaction (stacking) and the surprising decrease in cooperativity is seen as a result of mixing of contributions of hydrogen bonding and stacking.


Assuntos
DNA/química , Ligação de Hidrogênio , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...