Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Bioenerg ; 1865(3): 149044, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38588942

RESUMO

Primary processes of light energy conversion by Photosystem II (PSII) were studied using femtosecond broadband pump-probe absorption difference spectroscopy. Transient absorption changes of core complexes isolated from the cyanobacterium Synechococcus sp. PCC 7335 grown under far-red light (FRL-PSII) were compared with the canonical Chl a containing spinach PSII core complexes upon excitation into the red edge of the Qy band. Absorption changes of FRL-PSII were monitored at 278 K in the 400-800 nm spectral range on a timescale of 0.1-500 ps upon selective excitation at 740 nm of four chlorophyll (Chl) f molecules in the light harvesting antenna, or of one Chl d molecule at the ChlD1 position in the reaction center (RC) upon pumping at 710 nm. Numerical analysis of absorption changes and assessment of the energy levels of the presumed ion-radical states made it possible to identify PD1+ChlD1- as the predominant primary charge-separated radical pair, the formation of which upon selective excitation of Chl d has an apparent time of ∼1.6 ps. Electron transfer to the secondary acceptor pheophytin PheoD1 has an apparent time of ∼7 ps with a variety of excitation wavelengths. The energy redistribution between Chl a and Chl f in the antenna occurs within 1 ps, whereas the energy migration from Chl f to the RC occurs mostly with lifetimes of 60 and 400 ps. Potentiometric analysis suggests that in canonical PSII, PD1+ChlD1- can be partially formed from the excited (PD1ChlD1)* state.

2.
Photosynth Res ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466457

RESUMO

The widespread use of disinfectants and antiseptics, and consequently their release into the environment, determines the relevance of studying their potential impact on the main producers of organic matter on the planet-photosynthetic organisms. The review examines the effects of some biguanides and quaternary ammonium compounds, octenidine, miramistin, chlorhexidine, and picloxidine, on the functioning of the photosynthetic apparatus of various organisms (Strakhovskaya et al. in Photosynth Res 147:197-209, 2021; Knox et al. in Photosynth Res 153:103, 2022; Paschenko et al. in Photosynth Res 155:93-105, 2023a, Photosynth Res 2023b). A common feature of these antiseptics is the combination of hydrophobic and hydrophilic regions in the molecules, the latter carrying a positive charge(s). The comparison of the results obtained with intact bacterial membrane vesicles (chromatophores) and purified pigment-protein complexes (photosystem II and I) of oxygenic organisms allows us to draw conclusions about the mechanisms of the cationic antiseptic action on the functional properties of the components of the photosynthetic apparatus.

3.
Photosynth Res ; 159(2-3): 241-251, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37480468

RESUMO

In this study, the effects of cationic antiseptics such as chlorhexidine, picloxidine, miramistin, and octenidine at concentrations up to 150 µM on fluorescence spectra and its lifetimes, as well as on light-induced electron transfer in protein-pigment complexes of photosystem I (PSI) isolated from cyanobacterium Synechocystis sp. PCC 6803 have been studied. In doing so, octenidine turned out to be the most "effective" in terms of its influence on the spectral and functional characteristics of PSI complexes. It has been shown that the rate of energy migration from short-wavelength forms of light-harvesting chlorophyll to long-wavelength ones slows down upon addition of octenidine to the PSI suspension. After photo-separation of charges between the primary electron donor P700 and the terminal iron-sulfur center(s) FA/FB, the rate of forward electron transfer from (FA/FB)- to the external medium slows down while the rate of charge recombination between reduced FA/FB- and photooxidized P700+ increases. The paper considers the possible causes of the observed action of the antiseptic.


Assuntos
Anti-Infecciosos Locais , Iminas , Piridinas , Synechocystis , Complexo de Proteína do Fotossistema I , Elétrons , Cátions
4.
Biochemistry (Mosc) ; 88(10): 1428-1437, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38105015

RESUMO

Measurement of electrical potential difference (Δψ) in membrane vesicles (chromatophores) from the purple bacterium Rhodobacter sphaeroides associated with the surface of a nitrocellulose membrane filter (MF) impregnated with a phospholipid solution in decane or immersed into it in the presence of exogenous mediators and disaccharide trehalose demonstrated an increase in the amplitude and stabilization of the signal under continuous illumination. The mediators were the ascorbate/N,N,N'N'-tetramethyl-p-phenylenediamine pair and ubiquinone-0 (electron donor and acceptor, respectively). Although stabilization of photoelectric responses upon long-term continuous illumination was observed for both variants of chromatophore immobilization, only the samples immersed into the MF retained the functional activity of reaction centers (RCs) for a month when stored in the dark at room temperature, which might be due to the preservation of integrity of chromatophore proteins inside the MF pores. The stabilizing effect of the bioprotector trehalose could be related to its effect on both the RC proteins and the phospholipid bilayer membrane. The results obtained will expand current ideas on the use of semi-synthetic structures based on various intact photosynthetic systems capable of converting solar energy into its electrochemical form.


Assuntos
Cromatóforos , Rhodobacter sphaeroides , Trealose , Iluminação , Cromatóforos/metabolismo , Fosfolipídeos/metabolismo , Bactérias/metabolismo , Rhodobacter sphaeroides/metabolismo
5.
Biochemistry (Mosc) ; 88(10): 1544-1554, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38105023

RESUMO

Retinal-containing light-sensitive proteins - rhodopsins - are found in many microorganisms. Interest in them is largely explained by their role in light energy storage and photoregulation in microorganisms, as well as the prospects for their use in optogenetics to control neuronal activity, including treatment of various diseases. One of the representatives of microbial rhodopsins is ESR, the retinal protein of Exiguobacterium sibiricum. What distinguishes ESR from homologous proteins is the presence of a lysine residue (Lys96) as a proton donor for the Schiff base. This feature, along with the hydrogen bond of the proton acceptor Asp85 with the His57 residue, determines functional characteristics of ESR as a proton pump. This review examines the results of ESR studies conducted using various methods, including direct electrometry. Comparison of the obtained data with the results of structural studies and with other retinal proteins allows us to draw conclusions about the mechanisms of transport of hydrogen ions in ESR and similar retinal proteins.


Assuntos
Bacteriorodopsinas , Prótons , Transporte de Íons , Bombas de Próton/química , Bombas de Próton/metabolismo , Rodopsinas Microbianas/metabolismo , Bacteriorodopsinas/química
6.
Int J Mol Sci ; 24(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37108532

RESUMO

Microbial rhodopsins comprise a diverse family of retinal-containing membrane proteins that convert absorbed light energy to transmembrane ion transport or sensory signals. Incorporation of these proteins in proteoliposomes allows their properties to be studied in a native-like environment; however, unidirectional protein orientation in the artificial membranes is rarely observed. We aimed to obtain proteoliposomes with unidirectional orientation using a proton-pumping retinal protein from Exiguobacterium sibiricum, ESR, as a model. Three ESR hybrids with soluble protein domains (mCherry or thioredoxin at the C-terminus and Caf1M chaperone at the N-terminus) were obtained and characterized. The photocycle of the hybrid proteins incorporated in proteoliposomes demonstrated a higher pKa of the M state accumulation compared to that of the wild-type ESR. Large negative electrogenic phases and an increase in the relative amplitude of kinetic components in the microsecond time range in the kinetics of membrane potential generation of ESR-Cherry and ESR-Trx indicate a decrease in the efficiency of transmembrane proton transport. On the contrary, Caf-ESR demonstrates a native-like kinetics of membrane potential generation and the corresponding electrogenic stages. Our experiments show that the hybrid with Caf1M promotes the unidirectional orientation of ESR in proteoliposomes.


Assuntos
Bacillaceae , Prótons , Bacillaceae/metabolismo , Bombas de Próton/metabolismo , Rodopsinas Microbianas/metabolismo
7.
Biochim Biophys Acta Bioenerg ; 1864(3): 148975, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37001791

RESUMO

Chromatophores (Chr) from photosynthetic nonsulfur purple bacterium Rhodobacter sphaeroides immobilized onto a Millipore membrane filter (MF) and sandwiched between two semiconductor indium tin oxide (ITO) electrodes (termed ITO|Chr - MF|ITO) have been used to measure voltage (ΔV) induced by continuous illumination. The maximum ΔV was detected in the presence of ascorbate / N,N,N'N'-tetramethyl-p-phenylenediamine couple, coenzyme UQ0, disaccaride trehalose and antimycin A, an inhibitor of cytochrome bc1 complex. In doing so, the light-induced electron transfer in the reaction centers was the major source of photovoltages. The stability of the voltage signal upon prolonged irradiation (>1 h) may be due to the maintenance of a conformation that is optimal for the functioning of integral protein complexes and stabilization of lipid bilayer membranes in the presence of trehalose. Retaining ∼70 % of the original photovoltage performance on the 30th day of storage at 23 °C in the dark under air was achieved after re-injection of fresh buffer (∼40 µL) containing redox mediators into the ITO|Chr - MF|ITO system. The approach we use is easy and can be extended to other biological intact systems (cells, thylakoid membranes) capable of converting energy of light.


Assuntos
Cromatóforos Bacterianos , Cromatóforos , Cromatóforos Bacterianos/metabolismo , Trealose , Fotossíntese , Eletricidade
8.
Photosynth Res ; 155(1): 93-105, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36335236

RESUMO

Herein, the effect of cationic antiseptics (chlorhexidine, picloxidine, miramistin, octenidine) on the initial processes of the delivery of light energy and its efficient use by the reaction centers in intact spinach photosystem II core complexes has been investigated. The characteristic effects-an increase in the fluorescence yield of light-harvesting pigments and a slowdown in the rate of energy migration in bacterial photosynthetic chromatophores has been recently demonstrated mainly in the presence of octenidine (Strakhovskaya et al., in Photosynth Res 147:197-209, 2021; Knox et al., in Photosynth Res, https://doi.org/10.1007/s11120-022-00909-8 , 2022). In this study, we also observed that in the presence of octenidine, the fluorescence intensity of photosystem II core complexes increases by 5-10 times, and the rate of energy migration from antennae to the reaction centers decreases by 3 times. In addition, with an increase in the concentration of this antiseptic, a new effect related to a shift of the spectrum, absorption and fluorescence to the short-wavelength region has been found. Similar effects were observed when detergent Triton X-100 was added to photosystem II samples. We concluded that the antiseptic primarily affects the structure of the internal light-harvesting antenna (CP43 and CP47), through which the excitation energy is delivered to the reaction center. As a result of such an impact, the chlorophyll molecules in this structure are destabilized and their optical and functional characteristics change.


Assuntos
Anti-Infecciosos Locais , Complexo de Proteína do Fotossistema II , Complexo de Proteína do Fotossistema II/química , Complexos de Proteínas Captadores de Luz/química , Clorofila/química , Espectrometria de Fluorescência
9.
Biochemistry (Mosc) ; 87(10): 1109-1118, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36273879

RESUMO

In photosynthetic reaction centers of intact photosystem I (PSI) complexes from cyanobacteria, electron transfer at room temperature occurs along two symmetrical branches of redox cofactors A and B at a ratio of ~3 : 1 in favor of branch A. Previously, this has been indirectly demonstrated using pulsed absorption spectroscopy and more directly by measuring the decay modulation frequencies of electron spin echo signals (electron spin echo envelope modulation, ESEEM), which allows to determine the distance between the separated charges of the primary electron donor P700+ and phylloquinone acceptors A1A- and A1B- in the symmetric redox cofactors branches A and B. In the present work, these distances were determined using ESEEM in PSI complexes lacking three 4Fe-4S clusters, FX, FA, and FB, and the PsaC protein subunit (the so-called P700-A1 core), in which phylloquinone molecules A1A and A1B serve as the terminal electron acceptors. It was shown that in the P700-A1 core preparations, the average distance between the centers of the P700+A1- ion-radical pair at a temperature of 150 K in an aqueous glycerol solution and in a dried trehalose matrix, as well as in a trehalose matrix at 280 K, is ~25.5 Å, which corresponds to the symmetrical electron transfer along the A and B branches of redox cofactors at a ratio of 1 : 1. Possible reasons for the change in the electron transfer symmetry in PSI upon removal of the PsaC subunit and 4Fe-4S clusters FX, FA, and FB are discussed.


Assuntos
Proteínas Ferro-Enxofre , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema I/metabolismo , Ferro/metabolismo , Elétrons , Vitamina K 1 , Trealose , Subunidades Proteicas/metabolismo , Glicerol , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Enxofre/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Cinética
10.
Biochemistry (Mosc) ; 87(10): 1179-1186, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36273886

RESUMO

Transient absorption dynamics of chlorophylls a and d dissolved in tetrahydrofuran was measured by the broadband femtosecond laser pump-probe spectroscopy in a spectral range from 400 to 870 nm. The absorption spectra of the excited S1 singlet states of chlorophylls a and d were recorded, and the dynamics of the of the Qy band shift of the stimulated emission (Stokes shift of fluorescence) was determined in a time range from 60 fs to 4 ps. The kinetics of the intramolecular conversion Qx→Qy (electronic transition S2→S1) was measured; the characteristic relaxation time was 54 ± 3 and 45 ± 9 fs for chlorophylls a and d, respectively.


Assuntos
Clorofila , Furanos , Clorofila/química , Análise Espectral , Cinética
11.
Biophys Rev ; 14(4): 771-778, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36124261

RESUMO

Microbial rhodopsins are the family of retinal-containing proteins that perform primarily the light-driven transmembrane ion transport and sensory functions. They are widely distributed in nature and can be used for optogenetic control of the cellular activities by light. Functioning of microbial rhodopsins results in generation of the transmembrane electric potential in response to a flash that can be measured by direct time-resolved electrometry. This method was developed by L. Drachev and his colleagues at the Belozersky Institute and successfully applied in the functional studies of microbial rhodopsins. First measurements were performed using bacteriorhodopsin from Halobacterium salinarum-the prototype member of the microbial retinal protein family. Later, direct electrometric studies were conducted with proteorhodopsin from Exiguobacterium sibiricum (ESR), the sodium pump from Dokdonia, and other proteins. They allowed detailed characterization of the charge transfer steps during the photocycle of microbial rhodopsins and provided new insights for profound understanding of their mechanism of action.

12.
Biophys Rev ; 14(4): 805-820, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36124265

RESUMO

This review analyzes new data on the mechanism of ultrafast reactions of primary charge separation in photosystem I (PS I) of cyanobacteria obtained in the last decade by methods of femtosecond absorption spectroscopy. Cyanobacterial PS I from many species harbours 96 chlorophyll a (Chl a) molecules, including six specialized Chls denoted Chl1A/Chl1B (dimer P700, or PAPB), Chl2A/Chl2B, and Chl3A/Chl3B arranged in two branches, which participate in electron transfer reactions. The current data indicate that the primary charge separation occurs in a symmetric exciplex, where the special pair P700 is electronically coupled to the symmetrically located monomers Chl2A and Chl2B, which can be considered together as a symmetric exciplex Chl2APAPBChl2B with the mixed excited (Chl2APAPBChl2B)* and two charge-transfer states P700 +Chl2A - and P700 +Chl2B -. The redistribution of electrons between the branches in favor of the A-branch occurs after reduction of the Chl2A and Chl2B monomers. The formation of charge-transfer states and the symmetry breaking mechanisms were clarified by measuring the electrochromic Stark shift of ß-carotene and the absorption dynamics of PS I complexes with the genetically altered Chl 2B or Chl 2A monomers. The review gives a brief description of the main methods for analyzing data obtained using femtosecond absorption spectroscopy. The energy levels of excited and charge-transfer intermediates arising in the cyanobacterial PS I are critically analyzed.

13.
Biophys Rev ; 14(4): 933-939, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36124282

RESUMO

In this minireview, we consider the methods of measurements of the light-induced steady state transmembrane electric potential (Δψ) generation by photosynthetic systems, e.g. photosystem I (PS I). The microelectrode technique and the detection of electrochromic bandshifts of carotenoid pigments are most appropriate for Δψ measurements in situ and in vivo. Direct electrometrical method and Δψ measurements in the photovoltaic system based on membrane filter (MF) sandwiched between semiconductor indium tin oxide electrodes (ITO) are suitable for studies of isolated pigment-protein complexes and small natural vesicles-chromatophores. In the presence of trehalose, ITO|PS I-MF|ITO system allows to keep a steady state level of ∆ψ after 1 h of illumination. According to preliminary experiments, this system is capable of providing steady state light-induced ∆ψ after several months of storage in the dark at room temperature under controlled humidity in the presence of trehalose. The long-term generation of light-induced ∆ψ in relatively simple system may serve as a source of the solar-to-electric energy conversion.

14.
Biochemistry (Mosc) ; 87(8): 731-741, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36171654

RESUMO

This review provides a brief description of the structure and transport function of the recently discovered family of retinal-containing Na+-translocating rhodopsins. The main emphasis is put on the kinetics of generation of electric potential difference in the membrane during a single transporter turnover. According to the proposed transport mechanism of Na+-rhodopsin, the driving force for the Na+ translocation from the cytoplasm is the local electric field created by the H+ movement from the Schiff base.


Assuntos
Rodopsina , Bases de Schiff , Transporte de Íons , Íons , Luz , Proteínas de Membrana Transportadoras , Rodopsina/química , Sódio/metabolismo
15.
J Photochem Photobiol B ; 234: 112529, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35878544

RESUMO

Light-driven proton transport by microbial retinal proteins such as archaeal bacteriorhodopsin involves carboxylic residues as internal proton donors to the catalytic center which is a retinal Schiff base (SB). The proton donor, Asp96 in bacteriorhodopsin, supplies a proton to the transiently deprotonated Schiff base during the photochemical cycle. Subsequent proton uptake resets the protonated state of the donor. This two step process became a distinctive signature of retinal based proton pumps. Similar steps are observed also in many natural variants of bacterial proteorhodopsins and xanthorhodopsins where glutamic acid residues serve as a proton donor. Recently, however, an exception to this rule was found. A retinal protein from Exiguobacterium sibiricum, ESR, contains a Lys residue in place of Asp or Glu, which facilitates proton transfer from the bulk to the SB. Lys96 can be functionally replaced with the more common donor residues, Asp or Glu. Proton transfer to the SB in the mutants containing these replacements (K96E and K96D/A47T) is much faster than in the proteins lacking the proton donor (K96A and similar mutants), and in the case of K96D/A47T, comparable with that in the wild type, indicating that carboxylic residues can replace Lys96 as proton donors in ESR. We show here that there are important differences in the functioning of these residues in ESR from the way Asp96 functions in bacteriorhodopsin. Reprotonation of the SB and proton uptake from the bulk occur almost simultaneously during the M to N transition (as in the wild type ESR at neutral pH), whereas in bacteriorhodopsin these two steps are well separated in time and occur during the M to N and N to O transitions, respectively.


Assuntos
Bacteriorodopsinas , Prótons , Bacteriorodopsinas/química , Exiguobacterium , Concentração de Íons de Hidrogênio , Bombas de Próton/química , Bombas de Próton/metabolismo , Bases de Schiff/química
16.
Biochemistry (Mosc) ; 86(11): 1369-1376, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34906039

RESUMO

The effect of exogenous cytochrome c (cyt c) on kinetics of photoelectric responses (Δψ) of two types of photosystem II (PSII) core complexes (intact - PSII with active water-oxidizing complex and Mn-depleted complex) reconstituted into liposomes has been investigated by direct electrometric technique. PSII complexes were localized in the proteoliposome membranes with their donor side outward. An additional electrogenic phase was observed in the kinetics of Δψ generation in response to a laser flash besides the main fast (<0.3 µs) electrogenic component due to electron transfer from the redox-active tyrosine YZ to the primary quinone acceptor QA in the presence of oxidized cyt c (cyt c3+) entrapped in the internal space of proteoliposomes with intact PSII complexes. This component with characteristic time τ ≈ 40 µs and relative amplitude of ~10% of the total Δψ was attributed to the vectorial electron transfer from QA- to cyt c3+ serving as an external acceptor. An additional electrogenic component with τ ~ 70 µs and a relative amplitude of ~20% of the total Δψ also appeared in the kinetics of Δψ formation, when cyt c2+ was added to the suspension of proteoliposomes containing Mn-depleted PSII core complexes. This component was attributed to the electrogenic transfer of an electron from cyt c2+ to photooxidized tyrosine YZ. These data imply that cyt c3+ serves as a very effective exogenous electron acceptor for QA- in the case of intact PSII core complexes, and cyt c2+ is an extremely efficient artificial electron donor for YZ in the Mn-depleted PSII. The obtained data on the roles of cyt c2+ and cyt c3+ as an electron donor and acceptor for PSII, respectively, can be used to develop hybrid photoelectrochemical solar energy-converting systems based on photosynthetic pigment-protein complexes.


Assuntos
Citocromos c/química , Complexo de Proteína do Fotossistema II/química , Spinacia oleracea/enzimologia , Transporte de Elétrons , Cinética
17.
Biochim Biophys Acta Bioenerg ; 1862(7): 148413, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33716033

RESUMO

The kinetics of flash-induced re-reduction of the Photosystem II (PS II) primary electron donor P680 was studied in solution and in trehalose glassy matrices at different relative humidity. In solution, and in the re-dissolved glass, kinetics were dominated by two fast components with lifetimes in the range of 2-7 µs, which accounted for >85% of the decay. These components were ascribed to the direct electron transfer from the redox-active tyrosine YZ to P680+. The minor slower components were due to charge recombination between the primary plastoquinone acceptor QA- and P680+. Incorporation of the PS II complex into the trehalose glassy matrix and its successive dehydration caused a progressive increase in the lifetime of all kinetic phases, accompanied by an increase of the amplitudes of the slower phases at the expense of the faster phases. At 63% relative humidity the fast components contribution dropped to ~50%. A further dehydration of the trehalose glass did not change the lifetimes and contribution of the kinetic components. This effect was ascribed to the decrease of conformational mobility of the protein domain between YZ and P680, which resulted in the inhibition of YZ â†’ P680+ electron transfer in about half of the PS II population, wherein the recombination between QA- and P680+ occurred. The data indicate that PS II binds a larger number of water molecules as compared to PS I complexes. We conclude that our data disprove the "water replacement" hypothesis of trehalose matrix biopreservation.


Assuntos
Elétrons , Manganês/deficiência , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Trealose/química , Água/química , Transporte de Elétrons , Oxirredução
18.
Biochim Biophys Acta Bioenerg ; 1862(1): 148328, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33075275

RESUMO

ESR, a light-driven proton pump from Exiguobacterium sibiricum, contains a lysine residue (Lys96) in the proton donor site. Substitution of Lys96 with a nonionizable residue greatly slows reprotonation of the retinal Schiff base. The recent study of electrogenicity of the K96A mutant revealed that overall efficiency of proton transport is decreased in the mutant due to back reactions (Siletsky et al., BBA, 2019). Similar to members of the proteorhodopsin and xanthorhodopsin families, in ESR the primary proton acceptor from the Schiff base, Asp85, closely interacts with His57. To examine the role of His57 in the efficiency of proton translocation by ESR, we studied the effects of H57N and H57N/K96A mutations on the pH dependence of light-induced pH changes in suspensions of Escherichia coli cells, kinetics of absorption changes and electrogenic proton transfer reactions during the photocycle. We found that at low pH (<5) the proton pumping efficiency of the H57N mutant in E. coli cells and its electrogenic efficiency in proteoliposomes is substantially higher than in the WT, suggesting that interaction of His57 with Asp85 sets the low pH limit for H+ pumping in ESR. The electrogenic components that correspond to proton uptake were strongly accelerated at low pH in the mutant indicating that Lys96 functions as a very efficient proton donor at low pH. In the H57N/K96A mutant, a higher H+ pumping efficiency compared with K96A was observed especially at high pH, apparently from eliminating back reactions between Asp85 and the Schiff base by the H57N mutation.


Assuntos
Proteínas de Bactérias/química , Bacteriorodopsinas/química , Mutação de Sentido Incorreto , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriorodopsinas/genética , Bacteriorodopsinas/metabolismo , Exiguobacterium/enzimologia , Exiguobacterium/genética , Histidina/química , Histidina/genética , Histidina/metabolismo , Concentração de Íons de Hidrogênio , Prótons
19.
J Bioenerg Biomembr ; 52(6): 495-504, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33190172

RESUMO

The light-induced functioning of photosynthetic pigment-protein complex of photosystem II (PSII) is linked to the vectorial translocation of charges across the membrane, which results in the formation of voltage. Direct measurement of the light-induced voltage (∆V) generated by spinach oxygen-evolving PSII core complexes adsorbed onto a Millipore membrane filter (MF) on an indium tin oxide (ITO) electrode under continuous illumination has been performed. PSII was shown to participate in electron transfer from water to the ITO electrode, resulting in ∆V generation. No photovoltage was detected in PSII deprived of the water-oxidizing complex. The maximal and stable photoelectric signal was observed in the presence of disaccharide trehalose and 2,6-dichloro-1,4-benzoquinone, acting as a redox mediator between the primary quinone acceptor QA of PSII and electrode surface. Long time preservation of the steady-state photoactivity at room temperature in a simple in design ITO|PSII-MF|ITO system may be related to the retention of water molecules attached to the PSII surface in the presence of trehalose.


Assuntos
Transporte de Elétrons/fisiologia , Filtros Microporos/normas , Complexo de Proteína do Fotossistema II/metabolismo , Compostos de Estanho/metabolismo , Eletrodos , Humanos
20.
Biochim Biophys Acta Bioenerg ; 1861(5-6): 148184, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32179058

RESUMO

The Photosystem I (PSI) reaction center in cyanobacteria is comprised of ~96 chlorophyll (Chl) molecules, including six specialized Chl molecules denoted Chl1A/Chl1B (P700), Chl2A/Chl2B, and Chl3A/Chl3B that are arranged in two branches and function in primary charge separation. It has recently been proposed that PSI from Chroococcidiopsis thermalis (Nürnberg et al. (2018) Science 360, 1210-1213) and Fischerella thermalis PCC 7521 (Hastings et al. (2019) Biochim. Biophys. Acta 1860, 452-460) contain Chl f in the positions Chl2A/Chl2B. We tested this proposal by exciting RCs from white-light grown (WL-PSI) and far-red light grown (FRL-PSI) F. thermalis PCC 7521 with femtosecond pulses and analyzing the optical dynamics. If Chl f were in the position Chl2A/Chl2B in FRL-PSI, excitation at 740 nm should have produced the charge-separated state P700+A0- followed by electron transfer to A1 with a τ of ≤25 ps. Instead, it takes ~230 ps for the charge-separated state to develop because the excitation migrates uphill from Chl f in the antenna to the trapping center. Further, we observe a strong electrochromic shift at 685 nm in the final P700+A1- spectrum that can only be explained if Chl a is in the positions Chl2A/Chl2B. Similar arguments rule out the presence of Chl f in the positions Chl3A/Chl3B; hence, Chl f is likely to function solely as an antenna pigment in FRL-PSI. We additionally report the presence of an excitonically coupled homo- or heterodimer of Chl f absorbing around 790 nm that is kinetically independent of the Chl f population that absorbs around 740 nm.


Assuntos
Clorofila/análogos & derivados , Cianobactérias/metabolismo , Cianobactérias/efeitos da radiação , Complexos de Proteínas Captadores de Luz/metabolismo , Luz , Complexo de Proteína do Fotossistema I/metabolismo , Clorofila/metabolismo , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...