Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Eukaryot Microbiol ; 66(4): 582-591, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30460733

RESUMO

Molecular phylogenetic analysis of 18S rRNA gene sequences of nearly any species of Chytridiomycota has typically challenged traditional classification and triggered taxonomic revision. This has often led to the establishment of new taxa which, normally, appears well supported by zoospore ultrastructure, which provides diagnostic characters. To construct a meaningful and comprehensive classification of Chytridiomycota, the combination of molecular phylogenies and morphological studies of traditionally defined chytrid species is needed. In this work, we have studied morphological and ultrastructural features based on light and transmission electron microscopy as well as molecular phylogenetic analysis of a parasite (strain X-124 CCPP ZIN RAS) morphologically similar to Rhizophydium granulosporum living on the yellow-green alga Tribonema gayanum. Phylogenetic analysis of the 18S rRNA gene sequence of this strain supports that it represents a new genus and species affiliated to the recently established order Gromochytriales. The ultrastructure of X-124 confirms its phylogenetic position sister to Gromochytrium and serves as the basis for the description of the new genus and species Apiochytrium granulosporum. The 18S rRNA gene of A. granulosporum contains a S943 group I intron that carries a homing endonuclease pseudogene.


Assuntos
Quitridiomicetos/classificação , Quitridiomicetos/genética , Quitridiomicetos/ultraestrutura , Microscopia , Microscopia Eletrônica de Transmissão , Filogenia , RNA Fúngico/análise , RNA Ribossômico 18S/análise
2.
Protist ; 169(1): 122-140, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29477669

RESUMO

Fungi encompass, in addition to classically well-studied lineages, an ever-expanding diversity of poorly known lineages including zoosporic chytrid-like parasites. Here, we formally describe Amoeboradix gromovi gen. et sp. nov. comprising a set of closely related strains of chytrid-like parasites of the yellow-green alga Tribonema gayanum unusually endowed with amoeboid zoospores. Morphological and ultrastructural features of A. gromovi observed by light and transmission electron microscopy recall previous descriptions of Rhizophydium anatropum. A. gromovi exhibits one of the longest kinetosomes known in eukaryotes, composed of microtubular singlets or doublets. To carry out molecular phylogenetic analysis and validate the identification of different life cycle stages, we amplified 18S rRNA genes from three A. gromovi strains infecting T. gayanum cultures, single sporangia and single zoospores. Molecular phylogenetic analyses of 18S+28S rRNA concatenated genes of the type strain revealed that A. gromovi is closely related to the recently described species Sanchytrium tribonematis, another parasite of Tribonema that had been tentatively classified within Monoblepharidomycetes. However, our phylogenetic analysis with an extended taxon sampling did not show any particular affinity of Amoeboradix and Sanchytrium with described fungal taxa. Therefore, Amoeboradix gromovi and Sanchytrium tribonematis likely represent a new divergent taxon that remains incertae sedis within Fungi.


Assuntos
Clorófitas/microbiologia , Fungos/isolamento & purificação , DNA Fúngico/genética , Fungos/classificação , Fungos/genética , Fungos/ultraestrutura , Filogenia , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética
3.
Fungal Biol ; 121(8): 729-741, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28705399

RESUMO

The Monoblepharidomycetes is the sister class to the Chytridiomycetes in the phylum Chytridiomycota. The six known genera have thalli that are either monocentric and without rhizoids or produce hyphae with an independent evolutionary origin from the hyphae of higher fungi. On the basis of morphological characters and phylogenetic evidence from the small and large subunits of nuclear ribosomal RNA, we established two new genera, Sanchytrium and Telasphaerula, each with a single species. We re-analyzed intergeneric relationships within the monoblephs, and established two new families. The new genera significantly expand the known morphological and ecological diversity of the Monoblepharidomycetes by adding a monocentric, epibiotic, algal parasitic species and a rhizomycelial, saprotrophic species. Based on the presence of environmental sequences related to Sanchytrium strains, the Monoblepharidomycetes contain previously unsuspected diversity. The ribosomal DNA of the new genera contains an unusually high density of group I introns. We found 20 intron insertion positions including six that are new for rRNA genes (S1053, L803, L829, L961, L1844, and L2281).


Assuntos
Quitridiomicetos/classificação , Quitridiomicetos/genética , DNA Ribossômico/genética , Variação Genética , Íntrons , Filogenia , Quitridiomicetos/citologia , Microscopia
4.
J Eukaryot Microbiol ; 64(2): 204-212, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27487286

RESUMO

Aphelids are a poorly known group of parasitoids of algae that have raised considerable interest due to their pivotal phylogenetic position. Together with Cryptomycota and the highly derived Microsporidia, they have been recently re-classified as the Opisthosporidia, which constitute the sister group to the fungi within the Holomycota. Despite their huge diversity, as revealed by molecular environmental studies, and their phylogenetic interest, only three genera have been described (Aphelidium, Amoeboaphelidium, and Pseudaphelidium), from which 18S rRNA gene sequences exist only for Amoeboaphelidium and Aphelidium species. Here, we describe the life cycle and ultrastructure of a new representative of Aphelida, Paraphelidium tribonemae gen. et sp. nov., and provide the first 18S rRNA gene sequence obtained for this genus. Molecular phylogenetic analysis indicates that Paraphelidium is distantly related to both Aphelidium and Amoebaphelidium, highlighting the wide genetic diversity of aphelids. Paraphelidium tribonemae has amoeboflagellate zoospores containing a lipid-microbody complex, dictyosomes, and mitochondria with rhomboid cristae, which are also present in trophonts and plasmodia. The amoeboid trophont uses pseudopodia to feed from the host cytoplasm. Although genetically distinct, the genus Paraphelidium is morphologically indistinguishable from other aphelid genera and has zoospores able to produce lamellipodia with subfilopodia like those of Amoeboaphelidium.


Assuntos
Eucariotos/classificação , Eucariotos/genética , Eucariotos/ultraestrutura , Variação Genética , Filogenia , Amoeba/genética , Cistos/ultraestrutura , DNA de Protozoário/genética , DNA Ribossômico/genética , Ecologia , Eucariotos/fisiologia , Estágios do Ciclo de Vida , Microscopia Eletrônica de Transmissão , Organelas/ultraestrutura , Plasmodium/ultraestrutura , RNA Ribossômico 18S/genética , Análise de Sequência de DNA , Esporos/ultraestrutura
5.
J Eukaryot Microbiol ; 64(5): 573-578, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27987526

RESUMO

Aphelids remain poorly known parasitoids of algae and have recently raised considerable interest due to their phylogenetic position at the base of Holomycota. Together with Cryptomycota (Rozellosporidia) and Microsporidia, they have been recently re-classified as the Opisthosporidia, which constitutes the sister group to the fungi within the Holomycota. Molecular environmental studies have revealed a huge diversity of aphelids, but only four genera have been described: Aphelidium, Amoeboaphelidium, Paraphelidium, and Pseudaphelidium. Here, we describe the life cycle of a new representative of Aphelida, Paraphelidium letcheri sp. nov., and provide the 18S rRNA gene sequence for this species. Molecular phylogenetic analysis indicates that P. letcheri is sister to Paraphelidium tribonemae and together they form a monophyletic cluster which is distantly related to both, Aphelidium, with flagellated zoospores, and Amoebaphelidium, with amoeboid zoospores.


Assuntos
Eucariotos/classificação , Eucariotos/fisiologia , Análise de Sequência de DNA/métodos , DNA Ribossômico/genética , Eucariotos/genética , Evolução Molecular , Estágios do Ciclo de Vida , Filogenia , RNA Ribossômico 18S/genética
6.
Protist ; 165(4): 512-26, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24995586

RESUMO

Aphelids are a poorly known group of parasitoids of algae that have raised considerable interest due to their pivotal phylogenetic position. Together with Cryptomycota and the highly derived Microsporidia, they have been recently re-classified as Opisthosporidia, being the sister group to fungi. Despite their huge diversity, as revealed by molecular environmental studies, and their phylogenetic interest, only three genera have been described (Aphelidium, Amoeboaphelidium, and Pseudaphelidium), from which 18S rRNA gene sequences exist only for Amoeboaphelidium species. Here, we describe the life cycle and ultrastructure of Aphelidium aff. melosirae, and provide the first 18S rRNA gene sequence obtained for this genus. Molecular phylogeny analysis indicates that Aphelidium is very distantly related to Amoebaphelidium, highlighting the wide genetic diversity of the aphelids. The parasitoid encysts and penetrates the host alga, Tribonema gayanum through an infection tube. Cyst germination leads to a young trophont that phagocytes the algal cell content and progressively develops a plasmodium, which becomes a zoospore-producing sporangium. Aphelidium aff. melosirae has amoeboflagellate zoospores, tubular/lamellar mitochondrial cristae, a metazoan type of centrosome, and closed orthomitosis with an intranuclear spindle. These features together with trophont phagocytosis distinguish Aphelidium from fungi and support the erection of the new superphylum Opisthosporidia as sister to fungi.


Assuntos
Eucariotos/classificação , Eucariotos/ultraestrutura , Filogenia , Eucariotos/genética , Variação Genética/genética , Dados de Sequência Molecular , RNA Ribossômico 18S/genética
7.
Front Microbiol ; 5: 112, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24734027

RESUMO

The aphelids are a small group of intracellular parasitoids of common species of eukaryotic phytoplankton with three known genera Aphelidium, Amoeboaphelidium, and Pseudaphelidium, and 10 valid species, which form along with related environmental sequences a very diversified group. The phyla Microsporidia and Cryptomycota, and the class Aphelidea have recently been considered to be a deep branch of the Holomycota lineage forming the so called the ARM-clade which is sister to the fungi. In this review we reorganize the taxonomy of ARM-clade, and establish a new superphylum the Opisthosporidia with three phyla: Aphelida phyl. nov., Cryptomycota and Microsporidia. We discuss here all aspects of aphelid investigations: history of our knowledge, life cycle peculiarities, the morphology (including the ultrastructure), molecular phylogeny, ecology, and provide a taxonomic revision of the phylum supplied with a list of species. We compare the aphelids with their nearest relatives, the species of Rozella, and improve the diagnosis of the phylum Cryptomycota.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...