Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Inorg Chem ; 2019(8)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38715932

RESUMO

Neutron diffraction and spectroscopy offer unique insight into structures and properties of solids and molecular materials. All neutron instruments located at the various neutron sources are distinct, even if their designs are based on similar principles, and thus, they are usually less familiar to the community than commercial X-ray diffractometers and optical spectrometers. Major neutron instruments in the USA, which are open to scientists around the world, and examples of their use in coordination chemistry research are presented here, along with a list of similar instruments at main neutron facilities in other countries. The reader may easily and quickly find from this minireview an appropriate neutron instrument for research. The instruments include single-crystal and powder diffractometers to determine structures, inelastic neutron scattering (INS) spectrometers to probe magnetic and vibrational excitations, and quasielastic neutron scattering (QENS) spectrometers to study molecular dynamics such as methyl rotation on ligands. Key and unique features of the diffraction and neutron spectroscopy that are relevant to inorganic chemistry are reviewed.

2.
RSC Adv ; 14(22): 15743-15754, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38746847

RESUMO

It is established that the rates of solvent exchange at interfaces correlate with the rates of a number of mineral reactions, including growth, dissolution and ion sorption. To test if solvent exchange is limiting these rates, quasi-elastic neutron scattering (QENS) is used here to benchmark classical molecular dynamics (CMD) simulations of water bound to nanoparticulate calcite. Four distributions of solvent exchanges are found with residence times of 8.9 ps for water bound to calcium sites, 14 ps for that bound to carbonate sites and 16.7 and 85.1 ps for two bound waters in a shared calcium-carbonate conformation. By comparing rates and activation energies, it is found that solvent exchange limits reaction rates neither for growth nor dissolution, likely due to the necessity to form intermediate states during ion sorption. However, solvent exchange forms the ceiling for reaction rates and yields insight into more complex reaction pathways.

3.
J Phys Chem Lett ; 15(17): 4745-4752, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38661394

RESUMO

Ergosterol, found in fungi and some protist membranes, is understudied compared with cholesterol from animal membranes. Generally, ergosterol is assumed to modulate membranes in the same manner as cholesterol, based on their similar chemical structures. Here we reveal some fundamental structural and dynamical differences between them. Neutron diffraction shows that ergosterol is embedded in the lipid bilayer much shallower than cholesterol. Ergosterol does not change the membrane thickness as much as cholesterol does, indicating little condensation effect. Neutron spin echo shows that ergosterol can rigidify and soften membranes at different concentrations. The lateral lipid diffusion measured by quasielastic neutron scattering indicates that ergosterol promotes a jump diffusion of the lipid, whereas cholesterol keeps the same continuous lateral diffusion as the pure lipid membrane. Our results point to quite distinct interactions of ergosterol with membranes compared with cholesterol. These insights provide a basic understanding of membranes containing ergosterol with implications for phenomena such as lipid rafts and drug interactions.


Assuntos
Colesterol , Ergosterol , Bicamadas Lipídicas , Ergosterol/química , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Colesterol/química , Difração de Nêutrons , Difusão
4.
Nat Mater ; 23(5): 664-669, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38413811

RESUMO

Solvation dynamics critically affect charge transport. Spectroscopic experiments and computer simulations show that these dynamics in aqueous systems occur on a picosecond timescale. In the case of organic electrolytes, however, conflicting values ranging from 1 to several 100 picoseconds have been reported. We resolve this conflict by studying mixtures of an organic polymer and a lithium salt. Lithium ions coordinate with multiple polymer chains, resulting in temporary crosslinks. Relaxation of these crosslinks, detected by quasielastic neutron scattering, are directly related to solvation dynamics. Simulations reveal a broad spectrum of relaxation times. The average timescale for solvation dynamics in both experiment and simulation is one nanosecond. We present the direct measurement of ultraslow dynamics of solvation shell break-up in an electrolyte.

5.
Nat Commun ; 14(1): 4607, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528075

RESUMO

Porous carbons are the active materials of choice for supercapacitor applications because of their power capability, long-term cycle stability, and wide operating temperatures. However, the development of carbon active materials with improved physicochemical and electrochemical properties is generally carried out via time-consuming and cost-ineffective experimental processes. In this regard, machine-learning technology provides a data-driven approach to examine previously reported research works to find the critical features for developing ideal carbon materials for supercapacitors. Here, we report the design of a machine-learning-derived activation strategy that uses sodium amide and cross-linked polymer precursors to synthesize highly porous carbons (i.e., with specific surface areas > 4000 m2/g). Tuning the pore size and oxygen content of the carbonaceous materials, we report a highly porous carbon-base electrode with 0.7 mg/cm2 of electrode mass loading that exhibits a high specific capacitance of 610 F/g in 1 M H2SO4. This result approaches the specific capacitance of a porous carbon electrode predicted by the machine learning approach. We also investigate the charge storage mechanism and electrolyte transport properties via step potential electrochemical spectroscopy and quasielastic neutron scattering measurements.

6.
J Phys Chem B ; 127(33): 7384-7393, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37556231

RESUMO

We utilized the momentum transfer (Q)-dependence of quasi-elastic neutron scattering (QENS) to measure the dynamics of water and ethanol confined in graphene oxide (GO) powder or membranes at different temperatures and in different orientations. We found reduced diffusivities (up to 30% in the case of water) and a depression of dynamic transition temperatures. While water showed near Arrhenius behavior with an almost bulk-like activation barrier in a temperature range of 280-310 K, the diffusivity of ethanol showed little temperature dependence. For both water and ethanol, we found evidence for immobile and mobile fractions of the confined liquid. The mobile fraction exhibited jump diffusion, with a jump length consistent with the expected average spacing of hydroxide groups in the GO surfaces. From anisotropy measurements, we found weak anisotropy in the diffusivity of the mobile species and in the fraction and geometry of immobile species.

7.
Chem Rev ; 123(13): 8638-8700, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37315192

RESUMO

Understanding the structural dynamics/evolution of catalysts and the related surface chemistry is essential for establishing structure-catalysis relationships, where spectroscopic and scattering tools play a crucial role. Among many such tools, neutron scattering, though less-known, has a unique power for investigating catalytic phenomena. Since neutrons interact with the nuclei of matter, the neutron-nucleon interaction provides unique information on light elements (mainly hydrogen), neighboring elements, and isotopes, which are complementary to X-ray and photon-based techniques. Neutron vibrational spectroscopy has been the most utilized neutron scattering approach for heterogeneous catalysis research by providing chemical information on surface/bulk species (mostly H-containing) and reaction chemistry. Neutron diffraction and quasielastic neutron scattering can also supply important information on catalyst structures and dynamics of surface species. Other neutron approaches, such as small angle neutron scattering and neutron imaging, have been much less used but still give distinctive catalytic information. This review provides a comprehensive overview of recent advances in neutron scattering investigations of heterogeneous catalysis, focusing on surface adsorbates, reaction mechanisms, and catalyst structural changes revealed by neutron spectroscopy, diffraction, quasielastic neutron scattering, and other neutron techniques. Perspectives are also provided on the challenges and future opportunities in neutron scattering studies of heterogeneous catalysis.

8.
Commun Chem ; 6(1): 77, 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37087505

RESUMO

The transport of protons is critical in a variety of bio- and electro-chemical processes and technologies. The Grotthuss mechanism is considered to be the most efficient proton transport mechanism, generally implying a transfer of protons between 'chains' of host molecules via elementary reactions within the hydrogen bonds. Although Grotthuss proposed this concept more than 200 years ago, only indirect experimental evidence of the mechanism has been observed. Here we report the first experimental observation of proton transfer between the molecules in pure and 85% aqueous phosphoric acid. Employing dielectric spectroscopy, quasielastic neutron, and light scattering, and ab initio molecular dynamic simulations we determined that protons move by surprisingly short jumps of only ~0.5-0.7 Å, much smaller than the typical ion jump length in ionic liquids. Our analysis confirms the existence of correlations in these proton jumps. However, these correlations actually reduce the conductivity, in contrast to a desirable enhancement, as is usually assumed by a Grotthuss mechanism. Furthermore, our analysis suggests that the expected Grotthuss-like enhancement of conductivity cannot be realized in bulk liquids where ionic correlations always decrease conductivity.

9.
J Phys Chem B ; 127(1): 308-320, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36577128

RESUMO

Concentrated ionic solutions present a potential improvement for liquid electrolytes. However, their conductivity is limited by high viscosities, which can be attenuated via cosolvation. This study employs a series of experiments and molecular dynamics simulations to investigate how different cosolvents influence the local structure and charge transport in concentrated lithium bis(trifluoromethane-sulfonyl)imide (LiTFSI)/acetonitrile solutions. Regardless of whether the cosolvent's dielectric constant is low (for toluene and dichloromethane), moderate (acetone), or high (methanol and water), they preserve the structural and dynamical features of the cosolvent-free precursor. However, the dissimilar effects of each case must be individually interpreted. Toluene and dichloromethane reduce the conductivity by narrowing the distribution of Li+-TFSI- interactions and increasing the activation energies for ionic motions. Methanol and water broaden the distributions of Li+-TFSI- interactions, replace acetonitrile in the Li+ solvation, and favor short-range Li+-Li+ interactions. Still, these cosolvents strongly interact with TFSI-, leading to conductivities lower than that predicted by the Nernst-Einstein relation. Finally, acetone preserves the ion-ion interactions from the cosolvent-free solution but forms large solvation complexes by joining acetonitrile in the Li+ solvation. We demonstrate that cosolvation affects conductivity beyond simply changing viscosity and provide fairly unexplored molecular-scale perspectives regarding structure/transport phenomena relation in concentrated ionic solutions.

10.
Gels ; 8(9)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36135304

RESUMO

This research endeavors to link the physical and chemical characteristics of select polymer hydrogels to differences in printability when used as printing aids in cement-based printing pastes. A variety of experimental probes including differential scanning calorimetry (DSC), NMR-diffusion ordered spectroscopy (DOSY), quasi-elastic neutron scattering (QENS) using neutron backscattering spectroscopy, and X-ray powder diffraction (XRD), along with molecular dynamic simulations, were used. Conjectures based on objective measures of printability and physical and chemical-molecular characteristics of the polymer gels are emerging that should help target printing aid selection and design, and mix formulation. Molecular simulations were shown to link higher hydrogen bond probability and larger radius of gyration to higher viscosity gels. Furthermore, the higher viscosity gels also produced higher elastic properties, as measured by neutron backscattering spectroscopy.

11.
Life (Basel) ; 12(8)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36013398

RESUMO

The wavelengths of neutrons available at neutron scattering facilities are comparable with intra- and inter-molecular distances, while their energies are comparable with molecular vibrational energies, making such neutrons highly suitable for studies of molecular-level dynamics. The unmistakable trend in neutron spectroscopy has been towards measurements of systems of greater complexity. Several decades of studies of dynamics using neutron scattering have witnessed a progression from measurements of solids to liquids to protein complexes and biomembranes, which may exhibit properties characteristic of both solids and liquids. Over the last two decades, the frontier of complexity amenable to neutron spectroscopy studies has reached the level of cells. Considering this a baseline for neutron spectroscopy of systems of the utmost biological complexity, we briefly review what has been learned to date from neutron scattering studies at the cellular level and then discuss in more detail the recent strides into neutron spectroscopy of tissues and whole multicellular organisms.

12.
ACS Appl Mater Interfaces ; 14(32): 36980-36986, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35916606

RESUMO

Confined ionic liquids in hydrophilic porous media have disrupted lattices and can be divided into two layers: An immobile ion layer adheres to the pore surfaces, and an inner layer exhibits faster mobility than the bulk. In this work, we report the first study of ionic liquids confined in block copolymer-based porous carbon fibers (PCFs) synthesized from polyacrylonitrile-block-polymethyl methacrylate (PAN-b-PMMA). The PCFs contain a network of unimodal mesopores of 13.6 nm in diameter and contain more hydrophilic surface functional groups than previously studied porous carbon. Elastic neutron scattering shows no freezing point for 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4) confined in PCFs down to 20 K. Quasi-elastic neutron scattering (QENS) is used to measure the diffusion of [BMIM]BF4 confined in PCFs, which, surprisingly, is 7-fold faster than in the bulk. The unprecedentedly high ion diffusion remarks that PCFs hold exceptional potential for use in electrochemical catalysis, energy conversion, and storage.

13.
Medicina (Kaunas) ; 58(5)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35630072

RESUMO

The severity of the cancer statistics around the globe and the complexity involving the behavior of cancer cells inevitably calls for contributions from multidisciplinary areas of research. As such, materials science became a powerful asset to support biological research in comprehending the macro and microscopic behavior of cancer cells and untangling factors that may contribute to their progression or remission. The contributions of cellular water dynamics in this process have always been debated and, in recent years, experimental works performed with Quasielastic neutron scattering (QENS) brought new perspectives to these discussions. In this review, we address these works and highlight the value of QENS in comprehending the role played by water molecules in tumor cells and their response to external agents, particularly chemotherapy drugs. In addition, this paper provides an overview of QENS intended for scientists with different backgrounds and comments on the possibilities to be explored with the next-generation spectrometers under construction.


Assuntos
Neoplasias , Água , Humanos , Nêutrons
14.
J Phys Chem Lett ; 13(12): 2845-2850, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35324215

RESUMO

Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in organic solvents (especially propylene carbonate) has demonstrated extraordinary pseudocapacitive performance as an electrolyte in the supercapacitor configuration ( Nat. Energy 2019, 4, 241-248). However, the influence of the solvated ions on the diffusivity of the solvent molecules is yet to be understood. We examine the impact of LiTFSI on the diffusivity in five organic solvents: acetonitrile (ACN), tetrahydrofuran (THF), methanol (MeOH), dimethyl sulfoxide (DMSO), and propylene carbonate (PC) using a combination of neutron scattering, conductivity measurements, and molecular dynamics simulations. The extent of the diffusivity reduction in the concentration regime of ≤1 M directly correlates with the solvent mole fraction at which the solvation shells around Li+ ions are of similar size in all the solvents, resulting in a universal ∼50% reduction in the solvent diffusivity. These results provide guidance for formulation of the new electrolytes to enhance the performance of energy storage devices.

15.
Innovation (Camb) ; 3(1): 100199, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35059681

RESUMO

Phonons are quasi-particles, observed as lattice vibrations in periodic materials, that often dampen in the presence of structural perturbations. Nevertheless, phonon-like collective excitations exist in highly complex systems, such as proteins, although the origin of such collective motions has remained elusive. Here we present a picture of temperature and hydration dependence of collective excitations in green fluorescent protein (GFP) obtained by inelastic neutron scattering. Our results provide evidence that such excitations can be used as a measure of flexibility/softness and are possibly associated with the protein's activity. Moreover, we show that the hydration water in GFP interferes with the phonon propagation pathway, enhancing the structural rigidity and stability of GFP.

16.
Medicina (Kaunas) ; 57(12)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34946288

RESUMO

Background and Objectives: As an mRNA-based vaccine, the Pfizer-BioNTech COVID-19 vaccine has stringent cold storage requirements to preserve functionality of the mRNA active ingredient. To this end, lipid components of the vaccine formulation play an important role in stabilizing and protecting the mRNA molecule for long-term storage. The purpose of the current study was to measure molecular-level dynamics as a function of temperature in the Pfizer-BioNTech COVID-19 vaccine to gain microscopic insight into its thermal stability. Materials and Methods: We used quasielastic and inelastic neutron scattering to probe (1) the vaccine extracted from the manufacturer-supplied vials and (2) unperturbed vaccine in the original manufacturer-supplied vials. The latter measurement was possible due to the high penetrative power of neutrons. Results: Upon warming from the low-temperature frozen state, the vaccine in its original form exhibits two-step melting, indicative of a two-phase morphology. Once the melting is completed (above 0 °C), vaccine re-freezing cannot restore its original two-phase state. This observation is corroborated by the changes in the molecular vibrational spectra. The molecular-level mobility measured in the resulting single-phase state of the re-frozen vaccine greatly exceeds the mobility measured in the original vaccine. Conclusions: Even a brief melting (above 0 °C) leads to an irreversible alteration of the two-phase morphology of the original vaccine formulation. Re-freezing of the vaccine results in a one-phase morphology with much increased molecular-level mobility compared to that in the original vaccine, suggesting irreversible deterioration of the vaccine's in-storage stability. Neutron scattering can be used to distinguish between the vibrational spectra characteristic of the original and deteriorated vaccines contained in the unperturbed original manufacturer-supplied vials.


Assuntos
Vacina BNT162 , COVID-19 , Vacinas contra COVID-19 , Congelamento , Humanos , SARS-CoV-2
17.
Chem Phys Lett ; 777: 138727, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-33994552

RESUMO

A recent screening study highlighted a molecular compound, apilimod, for its efficacy against the SARS-CoV-2 virus, while another compound, tetrandrine, demonstrated a remarkable synergy with the benchmark antiviral drug, remdesivir. Here, we find that because of significantly reduced potential energy barriers, which also give rise to pronounced quantum effects, the rotational dynamics of the most dynamically active methyl groups in apilimod and tetrandrine are much faster than those in remdesivir. Because dynamics of methyl groups are essential for biochemical activity, screening studies based on the computed potential energy profiles may help identify promising candidates within a given class of drugs.

18.
J Phys Chem Lett ; 12(16): 4038-4044, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33881871

RESUMO

For the majority of the water present on earth, the two most important factors influencing its behavior are confinement, in either inorganic or organic matrixes, and the presence of solutes. Here, we investigate the effect of confinement in 3 nm pores on water diffusivity in aqueous solutions with archetypical solutes, a structure making (kosmotrope) NaCl and a structure breaking (chaotrope) KCl, up to 1.0 M in concentration. The water diffusivity in bulk aqueous solutions in such a concentration range is known to decrease very slightly in the presence of NaCl and increase very slightly in the presence of KCl. However, here we observe the water diffusivity in confined H2O-KCl increases by a factor of 2 compared to the pure water diffusivity in the same confinement. This unusually strong cumulative effect of confinement and a structure breaking additive may have profound implications for the mobility and transport of aqueous species in nature.

19.
Struct Dyn ; 8(2): 024303, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33834086

RESUMO

Room-temperature ionic liquids are promising candidates for applications ranging from electrolytes for energy storage devices to lubricants for food and cellulose processing to compounds for pharmaceutics, biotransformation, and biopreservation. Due to the ion complexity, many room-temperature ionic liquids readily form amorphous phases upon cooling, even at modest rates. Here, we investigate two commonly studied imidazolium-based room-temperature ionic liquids, 1-ethyl-3-methylimidazolium tetrafluoroborate and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, as well as their mixtures, to demonstrate how the complex interplay between the crystalline and amorphous phases is affected by the processing conditions, such as thermal history, liquid mixing, and applied pressure. We show that quantum tunneling in the cation methyl groups, measured by high-resolution inelastic neutron scattering, can be used to probe the order-disorder in room-temperature ionic liquids (crystalline vs amorphous state) that develops as a result of variable processing conditions.

20.
ACS Appl Mater Interfaces ; 12(52): 58378-58389, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33337151

RESUMO

The synthesis of heterostructures of different two-dimensional (2D) materials offers an approach to combine advantages of different materials constituting the heterostructure and ultimately enhance their performance for applications such as electrochemical energy storage, achieving high energy, and high-power densities. Understanding the behavior of ions and solvents in confinement between these dissimilar layers is critical to understand their performance and control. Considering aqueous electrolytes, we explore the heterostructure of 2D lepidocrocite-type TiO2 (2D-TiO2) and hydroxylated or O-terminated Ti3C2 MXene using ReaxFF molecular dynamics simulations and elastic/quasielastic neutron scattering techniques. Simulating a bilayer water intercalation, we find that the extent of interlayer hydration is impacted most by the surface terminations on the MXene and is marginally affected by 2D-TiO2. However, the introduction of 2D-TiO2 decreases the water self-diffusion due to the notch sites (i.e., surface oxygen ridges) entrapping water molecules. Intercalating alkali cations into the heterostructures, we find that Li+ is predominantly adsorbed at the 2D-TiO2 surface instead of the MXenes with the preferential occupation of the notch sites. In contrast, Na+ forms a planar solvation with water, while K+ is adsorbed both at the O-terminated MXene and 2D-TiO2. This behavior is altered when OH-terminated MXene is involved-the repulsion from the protons on the MXene surface forces the K+ ions to be adsorbed exclusively to 2D-TiO2, while Na+ retains some of its solvation in the water layer due to its smaller size. In OH-terminated MXenes, we see a consistent transfer of protons from the MXene surface toward 2D-TiO2, implying a greater capacity to store protons in the heterostructures. Of the three cations simulated, Na+ hinders the proton migration the least and Li+ the most because of its position near the 2D-TiO2 surface. Therefore, 2D-TiO2/MXene heterostructures are likely to exhibit a higher energy density but lower power density, especially with Na+ intercalation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...