Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Oncogenesis ; 5(8): e252, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27526106

RESUMO

The forkhead box M1 (FOXM1) transcription factor has a central role in genotoxic agent response in breast cancer. FOXM1 is regulated at the post-translational level upon DNA damage, but the key mechanism involved remained enigmatic. RNF168 is a ubiquitination E3-ligase involved in DNA damage response. Western blot and gene promoter-reporter analyses showed that the expression level and transcriptional activity of FOXM1 reduced upon RNF168 overexpression and increased with RNF168 depletion by siRNA, suggesting that RNF168 negatively regulates FOXM1 expression. Co-immunoprecipitation studies in MCF-7 cells revealed that RNF168 interacted with FOXM1 and that upon epirubicin treatment FOXM1 downregulation was associated with an increase in RNF168 binding and conjugation to the protein degradation-associated K48-linked polyubiquitin chains. Consistently, RNF168 overexpression resulted in an increase in turnover of FOXM1 in MCF-7 cells treated with the protein synthesis inhibitor cycloheximide. Conversely, RNF168, knockdown significantly enhanced the half-life of FOXM1 in both absence and presence of epirubicin. Using a SUMOylation-defective FOXM1-5x(K>R) mutant, we demonstrated that SUMOylation is required for the recruitment of RNF168 to mediate FOXM1 degradation. In addition, clonogenic assays also showed that RNF168 mediates epirubicin action through targeting FOXM1, as RNF168 could synergise with epirubicin to repress clonal formation in wild-type but not in FOXM1-deficient mouse embryo fibroblasts (MEFs). The physiological relevance of RNF168-mediated FOXM1 repression is further emphasized by the significant inverse correlation between FOXM1 and RNF168 expression in breast cancer patient samples. Moreover, we also obtained evidence that RNF8 recruits RNF168 to FOXM1 upon epirubicin treatment and cooperates with RNF168 to catalyse FOXM1 ubiquitination and degradation. Collectively, these data suggest that RNF168 cooperates with RNF8 to mediate the ubiquitination and degradation of SUMOylated FOXM1 in breast cancer genotoxic response.

3.
Oncogenesis ; 5: e214, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-27043660

RESUMO

BRCA1 mutation or depletion correlates with basal-like phenotype and poor prognosis in breast cancer but the underlying reason remains elusive. RNA and protein analysis of a panel of breast cancer cell lines revealed that BRCA1 deficiency is associated with downregulation of the expression of the pleiotropic tumour suppressor FOXO3. Knockdown of BRCA1 by small interfering RNA (siRNA) resulted in downregulation of FOXO3 expression in the BRCA1-competent MCF-7, whereas expression of BRCA1 restored FOXO3 expression in BRCA1-defective HCC70 and MDA-MB-468 cells, suggesting a role of BRCA1 in the control of FOXO3 expression. Treatment of HCC70 and MDA-MB-468 cells with either the DNA methylation inhibitor 5-aza-2'-deoxycitydine, the N-methyltransferase enhancer of zeste homologue 2 (EZH2) inhibitor GSK126 or EZH2 siRNA induced FOXO3 mRNA and protein expression, but had no effect on the BRCA1-competent MCF-7 cells. Chromatin immunoprecipitation (ChIP) analysis demonstrated that BRCA1, EZH2, DNMT1/3a/b and histone H3 lysine 27 trimethylation (H3K27me3) are recruited to the endogenous FOXO3 promoter, further advocating that these proteins interact to modulate FOXO3 methylation and expression. In addition, ChIP results also revealed that BRCA1 depletion promoted the recruitment of the DNA methyltransferases DNMT1/3a/3b and the enrichment of the EZH2-mediated transcriptional repressive epigenetic marks H3K27me3 on the FOXO3 promoter. Methylated DNA immunoprecipitation assays also confirmed increased CpG methylation of the FOXO3 gene on BRCA1 depletion. Analysis of the global gene methylation profiles of a cohort of 33 familial breast tumours revealed that FOXO3 promoter methylation is significantly associated with BRCA1 mutation. Furthermore, immunohistochemistry further suggested that FOXO3 expression was significantly associated with BRCA1 status in EZH2-positive breast cancer. Consistently, high FOXO3 and EZH2 mRNA levels were significantly associated with good and poor prognosis in breast cancer, respectively. Together, these data suggest that BRCA1 can prevent and reverse FOXO3 suppression via inhibiting EZH2 and, consequently, its ability to recruit the transcriptional repressive H3K27me3 histone marks and the DNA methylases DNMT1/3a/3b, to induce DNA methylation and gene silencing on the FOXO3 promoter.

4.
Oncogene ; 35(11): 1433-44, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26148240

RESUMO

The forkhead transcription factor FOXM1 has a key role in DNA damage response, and its deregulated overexpression is associated with genotoxic drug resistance in breast cancer. However, little is known about the posttranslational mechanisms by which FOXM1 expression is regulated by genotoxic agents and how they are deregulated in resistant cells. Initial co-immunoprecipitation studies verified previous proteomic analysis finding that the OTUB1 is a novel FOXM1-interacting protein. Western blot analysis showed that both OTUB1 and FOXM1 expression reduced upon genotoxic agent treatment in MCF-7 cells, but remained relatively constant in resistant cells. FOXM1 expression reduced upon OTUB1 depletion by siRNA and increased with OTUB1 overexpression in MCF-7 cells, arguing that OTUB1 positively regulates FOXM1 expression. In agreement, co-immunoprecipitation experiments demonstrated that FOXM1 expression is associated with OTUB1 binding but inversely correlates with conjugation to the protein degradation-associated Lys-48-linked ubiquitin-chains. Overexpression of wild-type (WT) OTUB1, but not the OTUB1(C91S) mutant, disrupted the formation of Lys48-linked ubiquitin-conjugates on FOXM1. Importantly, knockdown of OTUB1 by siRNA resulted in an increase in turnover of FOXM1 in MCF-7 cells treated with the protein synthesis inhibitor cycloheximide, whereas overexpression of WT OTUB1, but not the OTUB1(C91S) mutant, significantly enhances the half-life of FOXM1. In addition, proliferative and clonogenic assays also show that OTUB1 can enhance the proliferative rate and epirubicin resistance through targeting FOXM1, as OTUB1 has little effect on FOXM1-deficient cells. The physiological relevance of the regulation of FOXM1 by OTUB1 is further underscored by the significant correlations between FOXM1 and OTUB1 expression in breast cancer patient samples. Cox-regression survival analysis indicates that OTUB1 overexpression is linked to poorer outcome in particular in patients treated with chemotherapy. Collectively, these data suggest that OTUB1 limits the ubiquitination and degradation of FOXM1 in breast cancer and has a key role in genotoxic agent resistance.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Neoplasias da Mama/genética , Cisteína Endopeptidases/genética , Resistencia a Medicamentos Antineoplásicos/genética , Epirubicina/farmacologia , Fatores de Transcrição Forkhead/metabolismo , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cicloeximida/farmacologia , Dano ao DNA/genética , Reparo do DNA/genética , Enzimas Desubiquitinantes , Feminino , Proteína Forkhead Box M1 , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Células MCF-7 , Inibidores da Síntese de Proteínas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/genética , Ubiquitinação/genética
5.
Oncogene ; 35(8): 990-1002, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25961928

RESUMO

FOXM1 has been implicated in taxane resistance, but the molecular mechanism involved remains elusive. In here, we show that FOXM1 depletion can sensitize breast cancer cells and mouse embryonic fibroblasts into entering paclitaxel-induced senescence, with the loss of clonogenic ability, and the induction of senescence-associated ß-galactosidase activity and flat cell morphology. We also demonstrate that FOXM1 regulates the expression of the microtubulin-associated kinesin KIF20A at the transcriptional level directly through a Forkhead response element (FHRE) in its promoter. Similar to FOXM1, KIF20A expression is downregulated by paclitaxel in the sensitive MCF-7 breast cancer cells and deregulated in the paclitaxel-resistant MCF-7Tax(R) cells. KIF20A depletion also renders MCF-7 and MCF-7Tax(R) cells more sensitive to paclitaxel-induced cellular senescence. Crucially, resembling paclitaxel treatment, silencing of FOXM1 and KIF20A similarly promotes abnormal mitotic spindle morphology and chromosome alignment, which have been shown to induce mitotic catastrophe-dependent senescence. The physiological relevance of the regulation of KIF20A by FOXM1 is further highlighted by the strong and significant correlations between FOXM1 and KIF20A expression in breast cancer patient samples. Statistical analysis reveals that both FOXM1 and KIF20A protein and mRNA expression significantly associates with poor survival, consistent with a role of FOXM1 and KIF20A in paclitaxel action and resistance. Collectively, our findings suggest that paclitaxel targets the FOXM1-KIF20A axis to drive abnormal mitotic spindle formation and mitotic catastrophe and that deregulated FOXM1 and KIF20A expression may confer paclitaxel resistance. These findings provide insights into the underlying mechanisms of paclitaxel resistance and have implications for the development of predictive biomarkers and novel chemotherapeutic strategies for paclitaxel resistance.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Fatores de Transcrição Forkhead/fisiologia , Cinesinas/genética , Mitose , Paclitaxel/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Feminino , Proteína Forkhead Box M1 , Fatores de Transcrição Forkhead/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Cinesinas/metabolismo , Camundongos , Mitose/efeitos dos fármacos , Regiões Promotoras Genéticas , Fuso Acromático/fisiologia , Células Tumorais Cultivadas
6.
Oncogenesis ; 4: e167, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26344694

RESUMO

The forkhead transcription factor FOXK2 has recently been implicated in cancer cell proliferation and survival, but a role in cancer chemotherapeutic drug resistance has hitherto not been explored. Here we demonstrate that FOXK2 has a central role in mediating the cytotoxic drug response in breast cancer. Clonogenic and cell viability assays showed that enhanced FOXK2 expression sensitizes MCF-7 breast cancer cells to paclitaxel or epirubicin treatment, whereas FOXK2 depletion by small interfering RNAs (siRNAs) confers drug resistance. Our data also showed that the activation of the tumour suppressor FOXO3a by paclitaxel and epirubicin is mediated through the induction of FOXK2, as depletion of FOXK2 by siRNA limits the induction of FOXO3a by these drugs in MCF-7 cells. Chromatin immunoprecipitation (ChIP) analysis showed that in response to drug treatment, FOXK2 accumulates and binds to the proximal FOXO3a promoter region in MCF-7 cells. Furthermore, we also uncovered that FOXK2 is deregulated and, therefore, can express at high levels in the nucleus of both the paclitaxel and epirubicin drug-resistant MCF-7 cells. Our results showed that ectopically overexpressed FOXK2 accumulates in the nuclei of drug-resistant MCF-7 cells but failed to be recruited to target genes, including FOXO3a. Crucially, we found that FOXO3a is required for the anti-proliferative and epirubicin-induced cytotoxic function of FOXK2 in MCF-7 cells by sulphorhodamine and clonogenic assays. The physiological importance of the regulation of FOXO3a by FOXK2 is further confirmed by the significant correlations between FOXO3a and FOXK2 expression in breast carcinoma patient samples. Further survival analysis also reveals that high nuclear FOXK2 expression significantly associates with poorer clinical outcome, particularly in patients who have received conventional chemotherapy, consistent with our finding that FOXK2 is deregulated in drug-resistant cells. In summary, our results suggest that paclitaxel and epirubicin target the FOXK2 to modulate their cytotoxicity and deregulated FOXK2 confers drug resistance.

7.
Oncogene ; 33(32): 4144-55, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-24141789

RESUMO

FOXM1 is implicated in genotoxic drug resistance but its mechanism of action remains elusive. We show here that FOXM1-depletion can sensitize breast cancer cells and mouse embryonic fibroblasts (MEFs) into entering epirubicin-induced senescence, with the loss of long-term cell proliferation ability, the accumulation of γH2AX foci, and the induction of senescence-associated ß-galactosidase activity and cell morphology. Conversely, reconstitution of FOXM1 in FOXM1-deficient MEFs alleviates the accumulation of senescence-associated γH2AX foci. We also demonstrate that FOXM1 regulates NBS1 at the transcriptional level through an forkhead response element on its promoter. Like FOXM1, NBS1 is overexpressed in the epirubicin-resistant MCF-7Epi(R) cells and its expression level is low but inducible by epirubicin in MCF-7 cells. Consistently, overexpression of FOXM1 augmented and FOXM1 depletion reduced NBS1 expression and epirubicin-induced ataxia-telangiectasia mutated (ATM)phosphorylation in breast cancer cells. Together these findings suggest that FOXM1 increases NBS1 expression and ATM phosphorylation, possibly through increasing the levels of the MRN(MRE11/RAD50/NBS1) complex. Consistent with this idea, the loss of P-ATM induction by epirubicin in the NBS1-deficient NBS1-LBI fibroblasts can be rescued by NBS1 reconstitution. Resembling FOXM1, NBS1 depletion also rendered MCF-7 and MCF-7Epi(R) cells more sensitive to epirubicin-induced cellular senescence. In agreement, the DNA repair-defective and senescence phenotypes in FOXM1-deficent cells can be effectively rescued by overexpression of NBS1. Moreover, overexpression of NBS1 and FOXM1 similarly enhanced and their depletion downregulated homologous recombination (HR) DNA repair activity. Crucially, overexpression of FOXM1 failed to augment HR activity in the background of NBS1 depletion, demonstrating that NBS1 is indispensable for the HR function of FOXM1. The physiological relevance of the regulation of NBS1 expression by FOXM1 is further underscored by the strong and significant correlation between nuclear FOXM1 and total NBS1 expression in breast cancer patient samples, further suggesting that NBS1 as a key FOXM1 target gene involved in DNA damage response, genotoxic drug resistance and DNA damage-induced senescence.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Senescência Celular , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos , Epirubicina/química , Fatores de Transcrição Forkhead/fisiologia , Proteínas Nucleares/fisiologia , Animais , Antibióticos Antineoplásicos/química , Proteínas de Ciclo Celular/genética , Reparo do DNA , Proteínas de Ligação a DNA , Fibroblastos/citologia , Proteína Forkhead Box M1 , Fatores de Transcrição Forkhead/genética , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Células MCF-7 , Camundongos , Proteínas Nucleares/genética , Fenótipo , Fosforilação , Regiões Promotoras Genéticas , Transdução de Sinais
8.
Br J Cancer ; 97(7): 895-901, 2007 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-17848950

RESUMO

The role of secreted frizzled-related protein (SFRP) genes in gastric cancer remains largely unknown. We determined the frequency and functional significance of SFRPs hypermethylation in human gastric cancer. The expression and methylation status of four SFRP members (SFRP1, 2, 4, and 5) in primary gastric cancer samples was screened. The biological effects of SFRP were analysed by flow cytometry, cell viability assay and in vivo tumour growth in nude mice. Among the four SFRPs, only SFRP2 was significantly downregulated in gastric cancer as compared to adjacent non-cancer samples (P<0.01). Promoter hypermethylation of SFRP2 was detected in 73.3% primary gastric cancer tissues, 37.5% of samples showing intestinal metaplasia and 20% adjacent normal gastric tissues. Bisulphite DNA sequencing confirmed the densely methylated SFRP2 promoter region. Demethylation treatment restored the expression of SFRP2 in gastric cancer cell lines. Forced expression of SFRP2 induced cell apoptosis, inhibited proliferation of gastric cancer cells and suppressed tumour growth in vivo. Moreover, methylated SFRP2 was detected in 66.7% of serum samples from cancer patients but not in normal controls. In conclusion, epigenetic inactivation of SFRP2 is a common and early event contributing to gastric carcinogenesis and may be a potential biomarker for gastric cancer.


Assuntos
Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/genética , Regiões Promotoras Genéticas , Neoplasias Gástricas/genética , Proteínas Adaptadoras de Transdução de Sinal , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animais , Apoptose , Azacitidina , Linhagem Celular Tumoral , Proliferação de Células , Primers do DNA/química , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Citometria de Fluxo , Inativação Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Nus , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Neoplasias Gástricas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...