Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pathol ; 261(2): 156-168, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37555303

RESUMO

Aromatase inhibitors (Ais) are used as adjuvant endocrine therapy for oestrogen receptor-positive (ER+ve) post-menopausal breast cancer patients. Ais, by inhibiting the enzyme aromatase, block the conversion of androgen to oestrogen, reducing oestrogen levels. Resistance to Ais limits their clinical utilisation. Here, we show that overexpression of BQ323636.1 (BQ), a novel splice variant of nuclear co-repressor NCOR2, is associated with resistance to the non-steroidal aromatase inhibitor anastrozole in ER+ve post-menopausal breast cancer. Mechanistic study indicates that BQ overexpression enhances androgen receptor (AR) activity and in the presence of anastrozole, causes hyper-activation of AR signalling, which unexpectedly enhanced cell proliferation, through increased expression of CDK2, CDK4, and CCNE1. BQ overexpression reverses the effect of anastrozole in ER+ve breast cancer in an AR-dependent manner, whilst co-treatment with the AR antagonist bicalutamide recovered its therapeutic effect both in vitro and in vivo. Thus, for BQ-overexpressing breast cancer, targeting AR can combat anastrozole resistance. Clinical study of 268 primary breast cancer samples of ER+ve patients who had been treated with non-steroidal Ais showed 32.5% (38/117) of cases with combined high nuclear expression of BQ and AR, which were found to be significantly associated with Ai resistance. Non-steroidal Ai-treated patients with high nuclear expression of both BQ and AR had poorer overall, disease-specific, and disease-free survival. These findings suggest the importance of assessing BQ and AR expression status in the primary ER+ve breast tumour prior to Ai treatment. This may save patients from inappropriate treatment and enable effective therapy to be given at an early stage. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Anastrozol/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Inibidores da Aromatase/uso terapêutico , Inibidores da Aromatase/farmacologia , Estrogênios , Transdução de Sinais
2.
Clin Transl Med ; 11(11): e578, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34841695

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are members of the voltage-gated cation channel family known to be expressed in the heart and central nervous system. Ivabradine, a small molecule HCN channel-blocker, is FDA-approved for clinical use as a heart rate-reducing agent. We found that HCN2 and HCN3 are overexpressed in breast cancer cells compared with normal breast epithelia, and the high expression of HCN2 and HCN3 is associated with poorer survival in breast cancer patients. Inhibition of HCN by Ivabradine or by RNAi, aborted breast cancer cell proliferation in vitro and suppressed tumour growth in patient-derived tumour xenograft models established from triple-negative breast cancer (TNBC) tissues, with no evident side-effects on the mice. Transcriptome-wide analysis showed enrichment for cholesterol metabolism and biosynthesis as well as lipid metabolism pathways associated with ER-stress following Ivabradine treatment. Mechanistic studies confirmed that HCN inhibition leads to ER-stress, in part due to disturbed Ca2+ homeostasis, which subsequently triggered the apoptosis cascade. More importantly, we investigated the synergistic effect of Ivabradine and paclitaxel on TNBC and confirmed that both drugs acted synergistically in vitro through ER-stress to amplify signals for caspase activation. Combination therapy could suppress tumour growth of xenografts at much lower doses for both drugs. In summary, our study identified a new molecular target with potential for being developed into targeted therapy, providing scientific grounds for initiating clinical trials for a new treatment regimen of combining HCN inhibition with chemotherapy.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Linhagem Celular/efeitos dos fármacos , Linhagem Celular/fisiologia , Feminino , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/uso terapêutico , Ivabradina/metabolismo , Ivabradina/uso terapêutico
4.
Cancers (Basel) ; 12(3)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32110852

RESUMO

Breast cancer is the most common type of female cancer. Reactive oxygen species (ROS) are vital in regulating signaling pathways that control cell survival and cell proliferation. Chemotherapeutic drugs such as anthracyclines induce cell death via ROS induction. Chemoresistance development is associated with adaptive response to oxidative stress. NRF2 is the main regulator of cytoprotective response to oxidative stress. NRF2 can enhance cell growth, antioxidant expression, and chemoresistance by providing growth advantage for malignant cells. Previously, we identified BQ323636.1 (BQ), a novel splice variant of nuclear co-repressor NCOR2, which can robustly predict tamoxifen resistance in primary breast cancer. In this study, we found that BQ was overexpressed in epirubicin-resistant cells and demonstrated that BQ overexpression could reduce the levels of epirubicin-induced ROS and confer epirubicin resistance. In vivo analysis using tissue microarray of primary breast cancer showed direct correlation between BQ expression and chemoresistance. In vitro experiments showed BQ could modulate NRF2 transcriptional activity and upregulate antioxidants. Luciferase reporter assays showed that although NCOR2 repressed the transcriptional activity of NRF2, the presence of BQ reduced this repressive activity. Co-immunoprecipitation confirmed that NCOR2 could bind to NRF2 and that this interaction was compromised by BQ overexpression, leading to increased transcriptional activity in NRF2. Our findings suggest BQ can regulate the NRF2 signaling pathway via interference with NCOR2 suppressive activity and reveals a novel role for BQ as a modulator of chemoresistance in breast cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...