RESUMO
Red wine polyphenolic compounds have been demonstrated to possess antioxidant properties, and several studies have suggested that they might constitute a relevant dietary factor in the protection from coronary heart disease. The aim of the present study is to examine whether red wine extracts (RWE) can ameliorate oxysterol-induced endothelial response, and whether inhibition of adhesion molecule expression is involved in monocyte adhesion to endothelial cells. Surface expression and mRNA levels of adhesion molecules (intercellular adhesion molecule 1 and vascular cell adhesion molecule 1) were determined by ELISA and RT-PCR performed on human aortic endothelial cells (HAEC) monolayers stimulated with 7beta-hydroxycholesterol or 25-hydroxycholesterol. Incubation of HAEC with oxysterols (10 microM) increased expression of adhesion molecules in a time-dependent manner. Pretreatment of HAEC with RWE at final concentrations of 1, 10, and 100 ng/ml significantly inhibited the increase of surface protein expression and mRNA levels. Adherence of monocytes to oxysterol-stimulated HAEC was increased compared to that of unstimulated cells. Treatment of HAEC with RWE significantly inhibited adherence of monocytes. These results suggest that RWE works as an anti-atherogenic agent through the inhibition of endothelial-dependent adhesive interactions with monocytes induced by oxysterols.
Assuntos
Antioxidantes/farmacologia , Células Endoteliais/fisiologia , Molécula 1 de Adesão Intercelular/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Molécula 1 de Adesão de Célula Vascular/efeitos dos fármacos , Vinho , Aorta/citologia , Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Ensaio de Imunoadsorção Enzimática , Humanos , Hidroxicolesteróis/farmacologia , Molécula 1 de Adesão Intercelular/metabolismo , Monócitos/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Molécula 1 de Adesão de Célula Vascular/metabolismoRESUMO
Red wine polyphenolic compounds have been demonstrated to possess antioxidant properties, and several studies have suggested that they might constitute a relevant dietary factor in the protection from coronary heart disease. The aim of the present study is to examine whether red wine extracts (RWE) can ameliorate oxysterol-induced endothelial response, and whether inhibition of adhesion molecule expression is involved in monocyte adhesion to endothelial cells. Surface expression and mRNA levels of adhesion molecules (intercellular adhesion molecule 1 and vascular cell adhesion molecule 1) were determined by ELISA and RT-PCR performed on human aortic endothelial cells (HAEC) monolayers stimulated with 7b-hydroxycholesterol or 25-hydroxycholesterol. Incubation of HAEC with oxysterols (10 µM) increased expression of adhesion molecules in a time-dependent manner. Pretreatment of HAEC with RWE at final concentrations of 1, 10, and 100 ng/ml significantly inhibited the increase of surface protein expression and mRNA levels. Adherence of monocytes to oxysterol-stimulated HAEC was increased compared to that of unstimulated cells. Treatment of HAEC with RWE significantly inhibited adherence of monocytes. These results suggest that RWE works as an anti-atherogenic agent through the inhibition of endothelial-dependent adhesive interactions with monocytes induced by oxysterols.