Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Horiz ; 11(6): 1495-1501, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38226904

RESUMO

The control of droplet motion is a significant challenge, as there has been no simple method for effective manipulation. Utilizing light for the control of droplets offers a promising solution due to its non-contact nature and high degree of controllability. In this study, we present our findings on the translational motion of pre-photomelted droplets composed of azobenzene derivatives on a glass surface when exposed to UV and visible light sources from different directions. These droplets exhibited directional and continuous motion upon light irradiation and this motion was size-dependent. Only droplets with diameters less than 10 µm moved with a maximum velocity of 300 µm min-1. In addition, the direction of the movement was controllable by the direction of the light. The motion is driven by a change in contact angle, where UV or visible light switched the contact angle to approximately 50° or 35°, respectively. In addition, these droplets were also found to be capable carriers for fluorescent quantum dots. As such, droplets composed of photoresponsive molecules offer unique opportunities for designing novel light-driven open-surface microfluidic systems.

2.
ACS Nano ; 16(10): 16353-16362, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36222696

RESUMO

The intelligent transport of materials at interfaces is essential for a wide range of processes, including chemical microreactions, bioanalysis, and microfabrication. Both passive and active methods have been used to transport droplets, among which light-based techniques have attracted much attention because they are noncontact, safe, reversible, and controllable. However, conventional light-driven systems also involve challenges related to low transport ability and instability. Because of these shortcomings, technologies that can transport and manipulate droplets and microsolids on the same surface have yet to be realized. The present work demonstrates a light-driven system referred to as a liquid conveyor that enables the transport of both water droplets and microsolids. After the incorporation of an azobenzene-based molecular motor capable of undergoing photoisomerization into the surface liquid layer of this system, an isomerization gradient was induced by exposure to ultraviolet light emitting diodes that induced flow in this layer. Various parameters were optimized, including the concentration of the molecular motor compound, the light intensity, the viscosity of the liquid layer, and the droplet volume. This process eventually achieved the horizontal transport of droplets in any direction at varied rates. As a consequence of the limited heat buildup, the lack of droplet deformation, and extremely small contact angle hysteresis in this system, microsolids on droplets were also transported. This liquid conveyor is a promising platform for high-throughput omni-liquid/solid manipulation in the fields of biotechnology, chemistry, and mechanical engineering.

3.
Sci Technol Adv Mater ; 23(1): 473-497, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105915

RESUMO

The transport of liquid droplets plays an essential role in various applications. Modulating the wettability of the material surface is crucial in transporting droplets without external energy, adhesion loss, or intense controllability requirements. Although several studies have investigated droplet manipulation, its design principles have not been categorized considering the mechanical perspective. This review categorizes liquid droplet transport strategies based on wettability modulation into those involving (i) application of driving force to a droplet on non-sticking surfaces, (ii) formation of gradient surface chemistry/structure, and (iii) formation of anisotropic surface chemistry/structure. Accordingly, reported biological and artificial examples, cutting-edge applications, and future perspectives are summarized.

4.
Langmuir ; 37(51): 14878-14888, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34894693

RESUMO

The increase in energy loss due to friction and the use of large amounts of lubricants to improve it are major challenges we face from a global environmental perspective. Pitcher-plant-inspired liquid-infused surfaces (LISs) are emerging super-repellent surfaces against liquids. However, their coefficient of friction (CoF) against solids is higher than that of conventional lubricant surfaces. Herein, we demonstrate superlubricity with a single water droplet placed on a LIS holding oleic acid, a component of plant oil. When a water droplet is placed on the fluid layer, the CoF under reciprocating and rotating friction is 0.012 and 0.0098, respectively. A force in the direction opposite to the loading due to the Laplace pressure on the droplet and an autonomous positional movement of the water accompanied by the optimization of surface energy maintain the fluid-lubrication state and prevent direct contact between the surface and the friction material, resulting in a decrease of the dependence of the CoF on the friction velocity. The key technology here will not only present a novel strategy for preparing LISs against solids but also serve as a step toward a sustainable green strategy for friction reduction and lubrication, which would greatly reduce energy loss and environmental degradation.


Assuntos
Óleos de Plantas , Água , Fricção , Lubrificação , Propriedades de Superfície
5.
Langmuir ; 37(48): 14177-14185, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34808058

RESUMO

Photo-induced crawling motion of a crystal of 3,3'-dimethylazobenzene (DMAB) on gold surfaces having different surface properties and various patterns was studied. DMAB crystals crawl continuously when exposed to UV and visible lights simultaneously from different directions. On a gold surface functionalized by a thiol having a hydroxyl group at the terminal (16-hydroxy-1-hexadecanethiol (HOC16SH)), the crystals crawled with a relatively high velocity (ca. 4 µm min-1), and they changed the crystal shape while keeping a distinct crystal face. On a gold surface functionalized by a thiol having an alkyl chain terminal (1-hexadecanethiol (C16SH)), the crawling was observed with a slower velocity (ca. 1.5 µm min-1). However, the shape of the crystals became a droplet-like shape soon after the irradiation started, and the shape persisted during the motion. Light intensity dependence of the crawling velocity of the droplet-like crystal on this surface showed that UV light has stronger dependence for the motion than the visible light. On a substrate with a stripe pattern of alternating C16SH-modified gold and hexadecyltrimethylsilane (HDTMS)-modified glass, crystals crawled only on the surface of the C16SH-modified gold, which may be due to the wettability hysteresis at the surface. On a substrate with a stripe pattern of HOC16SH-modified gold and HDTMS-modified glass, crystals were attracted to the gold side. On a gold substrate with a periodic pattern of different height (ca. 50 nm) but having a uniform treatment with C16SH, crystals crawled up and down the steps without significant disturbance at the boundary of the step. Therefore, wettability of the surface has a greater impact on controlling the motion of the crystal than the surface structure. The present results not only unveil the crawling behavior on various surfaces but also offer a guide to controlling the motion toward applications for novel carriage vehicles to transport molecules/objects on a surface.

6.
Front Chem ; 9: 684767, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34422758

RESUMO

Photo-induced crawling motion of a crystal of 3,3'-dimethylazobenzene (DMAB) on a glass substrate having different surface properties was studied. When exposed to UV and visible lights simultaneously from different directions, crystals crawl continuously on a glass surface. On a hydrophilic surface, the crystals crawled faster than those on other surfaces but crystals showed spreading while they moved. On hydrophobic surfaces, on the other hand, the crystals showed little shape change and slower crawling motion. The contact angles of the liquid phase of DMAB on surface-modified glass substrates showed positive correlation with the water contact angles. The interaction of melted azobenzene with glass surfaces plays an important role for the crawling motion. We proposed models to explain the asymmetric condition that leads to the directional motion. Specifically by considering the penetration length of UV and visible light sources, it was successfully shown that the depth of light penetration is different at the position of a crystal. This creates a nonequilibrium condition where melting and crystallization are predominant in the same crystal.

7.
ACS Appl Mater Interfaces ; 13(30): 36341-36349, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34283561

RESUMO

Polymeric coatings with oxygen barrier properties are an important technology in food packaging that can extend the shelf life of food products and reduce waste. Although a typical technology in practical use is the deposition of metal or inorganic materials between multilayer films to reduce the oxygen transmission rate, once the film is damaged, oxygen permeates through the damaged area, damaging the packaged food. In addition, nanobrick wall structures consisting of nanoplatelet bricks have the potential to replace barrier films made of inorganic materials; however, they similarly lack repair performance or have slow repair speed despite having repair performance. Inspired by the rapid self-repair mechanism of cephalopods, the study develops a nanoclay-containing coating that can rapidly repair surface damage via water within 10 s. By introducing CaCl2-derived counterions and montmorillonite for nanobrick wall structures into polyelectrolyte multilayers stacked by layer-by-layer self-assembly, the noncovalent polymer network is increased, resulting in mimicking a strong cephalopod-derived ß-sheet structure and noncovalent intermolecular interactions derived from cephalopods. The high water retention at the surface showed super-bubble-phobicity in water and inhibited gas permeation. The oxygen permeability of the coatings with more than a certain amount of montmorillonite was less than 1/100 of that of bare polyethylene. The ultrafast self-healing gas barrier coating has the potential to be used not only for food products but also for electronics and pharmaceutical packaging and gas separation applications. The key technology developed in this study provides novel insights into the construction of self-healing membranes made of composite materials and will contribute to the formation of a sustainable society.

8.
RSC Adv ; 11(36): 22376-22380, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35480796

RESUMO

We demonstrated that the vertically aligned gold nanorods (AuNRs) were quickly and easily formed by using inkjet printing when aqueous dispersion of AuNRs containing a small amount of ethylene glycol (EG) was employed as an ink. It was observed that the content of EG in water suppressed rapid drying and convection in the droplets, which is favorable for the formation of the nanostructures.

9.
ACS Appl Mater Interfaces ; 10(26): 22731-22738, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29894154

RESUMO

Bioinspired photonic crystals that can be used to precisely control the optical reflection of light of a specific wavelength by varying their thickness and refractive index have attracted much attention. Among them, photonic crystals that can reflect near-infrared light have attracted attention owing to their potential applications including window coating with heat-shielding property. However, photonic crystals with an optical function in practical use sometimes lose their function because of contamination. Here, a near-infrared reflection coating film with self-healing omniphobicity was designed and prepared by layer-by-layer assembly and an instant liquid phase omniphobization method. The fabricated films had a self-cleaning thermal shielding effect. The films were visually transparent and could be used to control the reflection peak of the near-infrared light (range of 700-1000 nm) by adjusting the film thickness, which prevented the increase in temperature in enclosed spaces. After omniphobization, the films had self-cleaning properties of their surface and retained their optical properties. These functions are promising for practical application on windows as heat-shielding.

10.
ACS Appl Mater Interfaces ; 10(4): 4198-4205, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29323482

RESUMO

Inspired by natural living things such as lotus leaves and pitcher plants, researchers have developed many excellent antifouling coatings. In particular, hot-water-repellent surfaces have received much attention in recent years because of their wide range of applications. However, coatings with stability against boiling in hot water have not been achieved yet. Long-chain perfluorinated materials, which are often used for liquid-repellent coatings owing to their low surface energy, hinder the potential application of antifouling coatings in food containers. Herein, we design a fluorine-free slippery surface that immobilizes a biocompatible lubricant layer on a phenyl-group-modified smooth solid surface through OH-π interactions. The smooth base layer was fabricated by modification of phenyltriethoxysilane through a sol-gel method. The π-electrons of the phenyl groups interact with the carboxyl group of the oleic acid used as a lubricant, which facilitates immobilization on the base layer. Water droplets slid off the surface in the temperature range from 20 to 80 °C at very low sliding angles (<2°). Furthermore, we increased the π-electron density in the base layer to strengthen the OH-π interactions, which improved long-term boiling stability under hot water. We believe that this surface will be applied in fields in which the practical use of antifouling coatings is desirable, such as food containers, drink cans, and glassware.

11.
Langmuir ; 33(36): 8950-8960, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28826213

RESUMO

Control of vapor condensation properties is a promising approach to manage a crucial part of energy infrastructure conditions. Heat transfer by vapor condensation on superhydrophobic coatings has garnered attention, because dropwise condensation on superhydrophobic surfaces with rough structures leads to favorable heat-transfer performance. However, pinned condensed water droplets within the rough structure and a high thermodynamic energy barrier for nucleation of superhydrophobic surfaces limit their heat-transfer increase. Recently, slippery liquid-infused surfaces (SLIPS) have been investigated, because of their high water sliding ability and surface smoothness originating from the liquid layer. However, even on SLIPS, condensed water droplets are eventually pinned to degrade their heat-transfer properties after extended use, because the rough base layer is exposed as infused liquid is lost. Herein, we report a liquid-infused smooth surface named "SPLASH" (surface with π electron interaction liquid adsorption, smoothness, and hydrophobicity) to overcome the problems derived from the rough structures in previous approaches to obtain stable, high heat-transfer performance. The SPLASH displayed a maximum condensation heat-transfer coefficient that was 175% higher than that of an uncoated substrate. The SPLASH also showed higher heat-transfer performance and more stable dropwise condensation than superhydrophobic surfaces and SLIPS from the viewpoints of condensed water droplet mobility and the thermodynamic energy barrier for nucleation. The effects of liquid-infused surface roughness and liquid viscosity on condensation heat transfer were investigated to compare heat-transfer performance. This research will aid industrial applications using vapor condensation.

12.
ACS Appl Mater Interfaces ; 9(12): 10371-10377, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28291325

RESUMO

In this letter, we introduce a novel liquid manipulation strategy to design dynamically hydrophobic and statically hydrophobic/hydrophilic patterned surfaces using an "omniphobicity"-based technique. The surfaces guide the sliding direction of a droplet in the presence of a statically hydrophilic area where the droplet does not stick on the transport path significantly enhancing the fluidic system transport efficiency. The concept of dynamically hydrophobic and statically hydrophobic/hydrophilic patterned surfaces in conjunction with omniphobic patterning techniques having surface multifunctionality, we believe, has potential not only for fluidic applications but also for future material engineering development.

13.
ACS Appl Mater Interfaces ; 8(46): 31951-31958, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27801561

RESUMO

Reflection from various surfaces of many optical systems, such as photovoltaics and displays, is a critical issue for their performance, and antireflection coatings play a pivotal role in a wide variety of optical technologies, reducing light reflectance loss and hence maximizing light transmission. With the current movement toward optically transparent polymeric media and coatings for antireflection technology, the need for economical and environmentally friendly materials and methods without dependence on shape or size has clearly been apparent. Herein, we demonstrate novel antireflection coatings composed of chitin nanofibers (CHINFs), extracted from crab shell as a biomass material through an aqueous-based layer-by-layer self-assembly process to control the porosity. Increasing the number of air spaces inside the membrane led low refractive index, and precise control of refractive index derived from the stacking of the CHINFs achieved the highest transmittance with investigating the surface structure and the refractive index depending on the solution pH. At a wavelength of 550 nm, the transmittance of the coatings was 96.4%, which was 4.8% higher than that of a glass substrate, and their refractive index was 1.30. Further critical properties of the films were the durability and the antifogging performance derived from the mechanical stability and hydrophilicity of CHINFs, respectively. The present study may contribute to a development of systematically designed nanofibrous films which are suitable for optical applications operating at a broadband visible wavelength with durability and antifog surfaces.

14.
ACS Nano ; 10(10): 9387-9396, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27662461

RESUMO

Inspired by biointerfaces, such as the surfaces of lotus leaves and pitcher plants, researchers have developed innovative strategies for controlling surface wettability and transparency. In particular, great success has been achieved in obtaining low adhesion and high transmittance via the introduction of a liquid layer to form liquid-infused surfaces. Furthermore, smart surfaces that can change their surface properties according to external stimuli have recently attracted substantial interest. As some of the best-performing smart surface materials, slippery liquid-infused porous surfaces (SLIPSs), which are super-repellent, demonstrate the successful achievement of switchable adhesion and tunable transparency that can be controlled by a graded mechanical stimulus. However, despite considerable efforts, producing temperature-responsive, super-repellent surfaces at ambient temperature and pressure remains difficult because of the use of nonreactive lubricant oil as a building block in previously investigated repellent surfaces. Therefore, the present study focused on developing multifunctional materials that dynamically adapt to temperature changes. Here, we demonstrate temperature-activated solidifiable/liquid paraffin-infused porous surfaces (TA-SLIPSs) whose transparency and control of water droplet movement at room temperature can be simultaneously controlled. The solidification of the paraffin changes the surface morphology and the size of the light-transmission inhibitor in the lubricant layer; as a result, the control over the droplet movement and the light transmittance at different temperatures is dependent on the solidifiable/liquid paraffin mixing ratio. Further study of such temperature-responsive, multifunctional systems would be valuable for antifouling applications and the development of surfaces with tunable optical transparency for innovative medical applications, intelligent windows, and other devices.

15.
ACS Appl Mater Interfaces ; 8(36): 24212-20, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27540638

RESUMO

Ice formation causes numerous problems in many industrial fields as well as in our daily life. Various functional anti-ice coatings have been extensively studied during the past several decades; however, the development of feasible ice-repellent surfaces with long-term stability has been found to be extremely difficult. Here, we report the conductive superhydrophobic coatings with freezing rain repellency that simultaneously possess electrothermogenic ability to rapidly melt newly formed frosts due to the Joule heat. The obtained films have high mechanical flexibility and abrasion resistance produced by composite nanoparticles of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) embedded in ethyl cyanoacrylate. In addition, excellent water repellency (corresponding contact angle >160°) and efficient heating ability (with an estimated energy consumption as low as 260.8 °C cm(2)/W) generated by applying voltage through the conductive film surface have been demonstrated. The proposed concept of combining super-repellency with electrothermal heating may provide a new strategy of addressing problems related to ice formation.

16.
Nanoscale ; 8(21): 10922-7, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27188304

RESUMO

Uloborus walckenaerius spider webs provided the inspiration for attachable, self-standing nanofibre sheets. The developed product adds selective wettability against oil-water mixtures to both 2D and 3D materials by attaching or covering them, leading to successful separation through a facile, scalable and low-cost process.

17.
ACS Appl Mater Interfaces ; 8(1): 651-9, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26595458

RESUMO

Inspired by the special wettability of certain natural life forms, such as the high water repellency of lotus leaves, many researchers have attempted to impart superhydrophobic properties to fabrics in academic and industrial contexts. Recently, a new switching system of wettability has inspired a strong demand for advanced coatings, even though their fabrication remains complex and costly. Here, cotton fabrics with asymmetric wettability (one face with natural superhydrophilicity and one face with superhydrophobicity) were fabricated by one-step spraying of a mixture of biocompatible commercial materials, hydrophobic SiO2 nanoparticles and ethyl-α-cyanoacrylate superglue. Our approach involves controlling the permeation of the fabric coatings by changing the distance between the fabric and the sprayer, to make one side superhydrophobic and the other side naturally superhydrophilic. As a result, the superhydrophobic side, with its high mechanical durability, exhibited a water contact angle of 154° and sliding angle of 16°, which meets the requirement for self-cleaning ability of surfaces. The opposite side exhibited high water absorption ability owing to the natural superhydrophilic property of the fabric. In addition, the designed cotton fabrics had blood absorption and clotting abilities on the superhydrophilic side, while the superhydrophobic side prevented water and blood permeation without losing the natural breathability of the cotton. These functions may be useful in the design of multifunctional fabrics for medical applications.


Assuntos
Fibra de Algodão , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas/química , Polímeros/química , Absorção Fisico-Química , Animais , Coagulação Sanguínea , Nanopartículas/ultraestrutura , Espectroscopia Fotoeletrônica , Sus scrofa , Volatilização , Água/química , Molhabilidade
18.
ACS Appl Mater Interfaces ; 7(8): 4763-71, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25646977

RESUMO

Antifouling super-repellent surfaces inspired by Nepenthes, the pitcher plant, were designed and named slippery liquid-infused porous surfaces (SLIPS). These surfaces repel various simple and complex liquids including water and blood by maintaining a low sliding angle. Previous studies have reported the development of fluorinated SLIPS that are not biocompatible. Here, we fabricated fluid-infused films composed of biodegradable materials and a biocompatible lubricant liquid. The film was constructed using a combination of electrostatic interactions between chitosan and alginate and hydrogen-bonding between alginate and polyvinylpyrrolidone (PVPON) via the layer-by-layer self-assembly method. After chitosan and alginate were cross-linked, the PVPON was removed by increasing the pH to generate porosity from the deconstruction of the hydrogen-bonding. The porous underlayer was hydrophobized and covered by biocompatible almond oil. Blood easily flowed over this biodegradable and biocompatible SLIPS without leaving stains on the surface, and the material is environmentally durable, has a high transmittance of about 90%, and is antithrombogenic. The results of this study suggest that this SLIPS may facilitate the creation of nonfouling medical devices through a low-cost, eco-friendly, and simple process.


Assuntos
Alginatos/química , Anticoagulantes/química , Materiais Biocompatíveis/química , Quitosana/química , Anticoagulantes/farmacologia , Materiais Biocompatíveis/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Porosidade , Povidona/química , Espectroscopia de Infravermelho com Transformada de Fourier
19.
ACS Appl Mater Interfaces ; 7(8): 4809-16, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25625787

RESUMO

Inspired by naturally occurring superhydrophobic surfaces such as "lotus leaves", a number of approaches have been attempted to create specific surfaces having nano/microscale rough structures and a low surface free energy. Most importantly, much attention has been paid in recent years to the improvement of the durability of highly transparent superhydrophobic surfaces. In this report, superhydrophobic surfaces are fabricated using three steps. First, chemical and morphological changes are generated in the polyester mesh by alkaline treatment of NaOH. Second, alkaline treatment causes hydrophobic molecules of 1H,1H,2H,2H-perfluorodecyltrichlorosilane to react with the hydroxyl groups on the fiber surfaces forming covalent bonds by using the chemical vapor deposition method. Third, hydrophobicity is enhanced by treating the mesh with SiO2 nanoparticles modified with 1H,1H,2H,2H-perfluorooctyltriethoxysilane using a spray method. The transmittance of the fabricated superhydrophobic mesh is approximately 80% in the spectral range of 400-1000 nm. The water contact angle and the water sliding angle remain greater than 150° and lower than 25°, respectively, and the transmittance remains approximately 79% after 100 cycles of abrasion under approximately 10 kPa of pressure. The mesh surface exhibits a good resistance to acidic and basic solutions over a wide range of pH values (pH 2-14), and the surface can also be used as an oil/water separation material because of its mesh structure.

20.
ACS Appl Mater Interfaces ; 6(16): 13985-93, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25093243

RESUMO

Sophisticated material interfaces generated by natural life forms such as lotus leaves and Nepenthes pitcher plants have exceptional abilities to resolve challenges in wide areas of industry and medicine. The nano- and microstructures inspired by these natural materials can repel various liquids and form self-cleaning coatings. In particular, slippery liquid-infused surfaces are receiving remarkable interest as transparent, nonfouling, and antifrosting synthetic surfaces for solar cells and optical devices. Here we focus on the transparency of lubricant-infused texture on antireflective films fabricated by layer-by-layer self-assembly that decrease light scattering, which is important to maintain device properties. A slippery fluid-infused antireflective film composed of chitin nanofibers less than 50 nm in diameter prevented light scattering at the long-wavelength side by Rayleigh scattering to achieve 97.2% transmittance. Moreover, films composed of the same materials demonstrated three different morphologies: superhydrophilicity with antireflection, superhydrophobicity, and omniphobicity, mimicking the biological structures of moth eyes, lotus leaves, and pitcher plants, respectively. The effect of thermal changes on the ability of each film to prevent frost formation was investigated. The slippery fluid-infused antireflective film showed effective antifrosting behavior.


Assuntos
Biomimética/métodos , Membranas Artificiais , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...