Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Rep ; 38: 101710, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38638674

RESUMO

Progesterone suppresses several ancient pathways in a concentration-dependent manner. Based on these characteristics, progesterone is considered a candidate anticancer drug. However, the concentration of progesterone used for therapy should be higher than the physiological concentration, which makes it difficult to develop progesterone-based anticancer drugs. We previously developed liposome-encapsulated progesterone (Lipo-P4) with enhanced anticancer effects, which strongly suppressed triple-negative breast cancer cell proliferation in humanized mice. In this study, we aimed to clarify whether Lipo-P4 effectively suppresses the proliferation of B-lineage cancer cells. We selected six B-cell lymphoma and two myeloma cell lines, and analyzed their surface markers using flow cytometry. Next, we prepared liposome-encapsulated progesterone and examined its effect on cell proliferation in these B-lineage cancer cells, three ovarian clear cell carcinoma cell lines, two prostate carcinoma cell lines, and one triple-negative breast cancer adenocarcinoma cell line. Lipo-P4 suppressed the proliferation of all cancer cell lines. All B-lineage cell lines, except for the HT line, were more susceptible than the other cell types, regardless of the expression of differentiation markers. Empty liposomes did not suppress cell proliferation. These results suggest that progesterone encapsulated in liposomes efficiently inhibits the proliferation of B-lineage cells and may become an anticancer drug candidate for B-lineage cancers.

2.
ACS Cent Sci ; 10(2): 447-459, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38435526

RESUMO

Streptococcus gordonii is a Gram-positive bacterial species that typically colonizes the human oral cavity, but can also cause local or systemic diseases. Serine-rich repeat (SRR) glycoproteins exposed on the S. gordonii bacterial surface bind to sialylated glycans on human salivary, plasma, and platelet glycoproteins, which may contribute to oral colonization as well as endocardial infections. Despite a conserved overall domain organization of SRR adhesins, the Siglec-like binding regions (SLBRs) are highly variable, affecting the recognition of a wide range of sialoglycans. SLBR-N from the SRR glycoprotein of S. gordonii UB10712 possesses the remarkable ability to recognize complex core 2 O-glycans. We here employed a multidisciplinary approach, including flow cytometry, native mass spectrometry, isothermal titration calorimetry, NMR spectroscopy from both protein and ligand perspectives, and computational methods, to investigate the ligand specificity and binding preferences of SLBR-N when interacting with mono- and disialylated core 2 O-glycans. We determined the means by which SLBR-N preferentially binds branched α2,3-disialylated core 2 O-glycans: a selected conformation of the 3'SLn branch is accommodated into the main binding site, driving the sTa branch to further interact with the protein. At the same time, SLBR-N assumes an open conformation of the CD loop of the glycan-binding pocket, allowing one to accommodate the entire complex core 2 O-glycan. These findings establish the basis for the generation of novel tools for the detection of specific complex O-glycan structures and pave the way for the design and development of potential therapeutics against streptococcal infections.

3.
Chem Commun (Camb) ; 60(29): 3946-3949, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38497901

RESUMO

We synthesized and evaluated Pam3CSK4-conjugated receptor binding domain (RBD)/deglycosylated RBD as potential anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine candidates. Our investigation revealed the critical importance of limiting the number of introduced Pam3CSK4 molecules to the RBD in order to preserve its antigenicity. We also confirmed the harmonious integration of the adjuvant-conjugation strategy with the glycan-shield removal strategy.


Assuntos
COVID-19 , Vacinas Virais , Humanos , SARS-CoV-2 , Receptor 1 Toll-Like , Anticorpos Antivirais , COVID-19/prevenção & controle , Ligantes , Adjuvantes Imunológicos/farmacologia
4.
Phytochemistry ; 220: 114009, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342289

RESUMO

Seven previously undescribed preurianin-type limonoids, namely paraxylines A-G, and three known analogs were isolated from stem bark of Dysoxylum parasiticum. The structures, including absolute configurations, were established through spectroscopic analyses, quantum chemical calculations using the density functional theory method, as well as the DP4+ algorithm. Paraxylines A-G were identified as the first preurianin-type with full substitution at C, D-rings, leading to the highly oxygenated seco-limonoids skeleton. The secreted alkaline phosphate assay against an engineered human and murine TLR4 of HEK-Blue cells was performed to evaluate the immune regulating effects. Among them, paraxyline B was found to be a remarkable TLR4 agonist whereas two analogs (toonapubesins A and B) were found to antagonise lipopolysaccharide stimulation of the TLR4 pathway. Paraxylines A and C-E acted either as agonists or antagonists depending on the origin of the TLR4 receptor (human or mouse). The effect of these selected compounds on the expression of pro-inflammatory cytokines TNF-α, IL-1α, IL-1ß, and IL-6 of the NF-κB signaling pathway were examined in macrophage cell lines, revealing dose-dependent effects. Additionally, paraxylines A, C, D, and G also presented modest cytotoxic activity against MCF-7 and HeLa cell lines with IC50 values ranging from 23.1 to 43.5 µM.


Assuntos
Antineoplásicos Fitogênicos , Antineoplásicos , Limoninas , Meliaceae , Humanos , Animais , Camundongos , Limoninas/farmacologia , Limoninas/química , Receptor 4 Toll-Like , Células HeLa , Casca de Planta/química , Estrutura Molecular , Antineoplásicos Fitogênicos/química , Meliaceae/química
5.
Front Chem ; 11: 1319883, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116104

RESUMO

The presence of NHAc groups in the substrates (both glycosyl donors and acceptors) significantly reduced the reactivity of glycosylation. This decrease was attributed to the NHAc groups forming intermolecular hydrogen bonds by the NHAc groups, thereby reducing molecular mobility. Hence, a diacetyl strategy involving the temporary conversion of NHAc to diacetyl imide (NAc2) was developed for the synthesis of NHAc-containing glycans. This strategy has two significant advantages for oligosaccharide synthesis. The NAc2 protection of NHAc substantially enhances the rate of glycosylation reactions, resulting in improved yields. Moreover, NAc2 can be readily reverted to NHAc by the simple removal of one acetyl group under mild basic conditions, obviating the necessity for treating the polar amino group. We have achieved the efficient synthesis of oligosaccharides containing GlcNHAc and N-glycans containing sialic acid using the diacetyl strategy.

7.
Front Immunol ; 14: 1173728, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492571

RESUMO

Immune checkpoint inhibitors highlight the importance of anticancer immunity. However, their clinical utility and safety are limited by the low response rates and adverse effects. We focused on progesterone (P4), a hormone produced by the placenta during pregnancy, because it has multiple biological activities related to anticancer and immune regulation effects. P4 has a reversible immune regulatory function distinct from that of the stress hormone cortisol, which may drive irreversible immune suppression that promotes T cell exhaustion and apoptosis in patients with cancer. Because the anticancer effect of P4 is induced at higher than physiological concentrations, we aimed to develop a new anticancer drug by encapsulating P4 in liposomes. In this study, we prepared liposome-encapsulated anti-programmed death ligand 1 (PD-L1) antibody-conjugated P4 (Lipo-anti-PD-L1-P4) and evaluated the effects on the growth of MDA-MB-231 cells, a PD-L1-expressing triple-negative breast cancer cell line, in vitro and in NOG-hIL-4-Tg mice transplanted with human peripheral blood mononuclear cells (humanized mice). Lipo-anti-PD-L1-P4 at physiological concentrations reduced T cell exhaustion and proliferation of MDA-MB-231 in vitro. Humanized mice bearing MDA-MB-231 cells expressing PD-L1 showed suppressed tumor growth and peripheral tissue inflammation. The proportion of B cells and CD4+ T cells decreased, whereas the proportion of CD8+ T cells increased in Lipo-anti-PD-L1-P4-administrated mice spleens and tumor-infiltrated lymphocytes. Our results suggested that Lipo-anti-PD-L1-P4 establishes a systemic anticancer immune environment with minimal toxicity. Thus, the use of P4 as an anticancer drug may represent a new strategy for cancer treatment.


Assuntos
Lipossomos , Neoplasias , Humanos , Animais , Camundongos , Progesterona , Leucócitos Mononucleares
8.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298546

RESUMO

Targeted alpha therapy (TAT) has garnered significant interest as an innovative cancer therapy. Owing to their high energy and short range, achieving selective α-particle accumulation in target tumor cells is crucial for obtaining high potency without adverse effects. To meet this demand, we fabricated an innovative radiolabeled antibody, specifically designed to selectively deliver 211At (α-particle emitter) to the nuclei of cancer cells. The developed 211At-labeled antibody exhibited a superior effect compared to its conventional counterparts. This study paves the way for organelle-selective drug delivery.


Assuntos
Neoplasias , Radioisótopos , Humanos , Radioisótopos/uso terapêutico , Sistemas de Liberação de Medicamentos , Núcleo Celular , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia
9.
J Am Chem Soc ; 145(29): 15838-15847, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37344812

RESUMO

We report a promising cancer vaccine candidate comprising antigen/adjuvant-displaying enveloped viral replica as a novel vaccine platform. The artificial viral capsid, which consists of a self-assembled ß-annulus peptide conjugated with an HER2-derived antigenic CH401 peptide, was enveloped within a lipid bilayer containing the lipidic adjuvant α-GalCer. The use of an artificial viral capsid as a scaffold enabled precise control of its size to ∼100 nm, which is generally considered to be optimal for delivery to lymph nodes. The encapsulation of the anionically charged capsid by a cationic lipid bilayer dramatically improved its stability and converted its surface charge to cationic, enhancing its uptake by dendritic cells. The developed CH401/α-GalCer-displaying enveloped viral replica exhibited remarkable antibody-production activity. This study represents a pioneering example of precise vaccine design through bottom-up construction and opens new avenues for the development of effective vaccines.


Assuntos
Vacinas Anticâncer , Neoplasias , Bicamadas Lipídicas , Antígenos , Adjuvantes Imunológicos , Peptídeos
10.
Angew Chem Int Ed Engl ; 62(30): e202304779, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37083035

RESUMO

Antibody dynamics on membranes, such as endocytosis and clustering, are vital in determining antibody functions. In this study, we demonstrated that glycan conjugation can modulate antibody dynamics through the glycan-lectin interaction to regulate its potency. The anti-HER2 antibody, an anti-breast-cancer antibody, was conjugated with galactose-containing N-glycan, and its internalization was suppressed by interaction with galectin-3, leading to enhanced complement-dependent cytotoxic (CDC) activity. This glycan-antibody conjugate is proposed as a new approach to modulate antibody activity and may provide an alternative strategy for redeveloping antibody drugs that do not exhibit sufficient activity.


Assuntos
Antineoplásicos , Imunoconjugados , Lectinas , Polissacarídeos
11.
Angew Chem Int Ed Engl ; 62(25): e202303750, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37042088

RESUMO

We propose a de novo glycan display approach that combines metabolic labeling and a glycan-caging strategy as a facile editing method for cell-surface glycans. This method enables the introduction of antigen glycans onto cancer cells to induce immune responses through antibody recruiting. The caging strategy prevents the capture of α-rhamnose (an antigen glycan) by endogenous antibodies during the introduction of the glycan to the targeted cell surface, and subsequent uncaging successfully induces immune responses. Therefore, this study proposes a practical method for editing the cell-surface glycocalyx under promiscuous conditions, such as those in vivo, which paves the way for the development of glycan function analysis and regulation.


Assuntos
Anticorpos , Polissacarídeos , Polissacarídeos/metabolismo , Membrana Celular/metabolismo , Ramnose
12.
RSC Adv ; 13(14): 9370-9376, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36968060

RESUMO

An asymmetrical true-dimeric cadinane via ketonic bridge [C-15/C-3'], dysotican F (1), two symmetrical pseudo-cadinane dimers through an O-ether linkage [C-3/C-3'], dysoticans G (2) and H (3), as well as three known sesquiterpenoids 4-6 were obtained from the stem bark of Dysoxylum parasiticum (Osbeck) Kosterm. (Meliaceae). Their structures were determined by spectroscopic and quantum chemical calculations of 13C NMR shifts using a GIAO method and electronic circular dichroism (ECD) using a TDDFT method. A possible biogenetic pathway for 1-3 beginning from the known compounds (i-ii) was proposed. Cytotoxic evaluation showed that 2 as a new lead compound is the most potent against the MCF-7 and HeLa cell lines with IC50 values of 12.07 ± 0.17 µM and 9.29 ± 0.33 µM, while 1 has moderate inhibition with IC50 values of 31.59 ± 0.34 µM and 27.93 ± 0.25 µM. Furthermore, 3 is a selective inhibitor against the HeLa cell growth with an IC50 value of 39.72 ± 0.18 µM. A brief structure-activity relationship analysis of all isolated compounds 1-6 was also provided, including comparison with the coexisting molecules in the previous report.

13.
Angew Chem Int Ed Engl ; 62(13): e202218655, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36719065

RESUMO

Asparagine-linked protein glycosylations (N-glycosylations) are one of the most abundant post-translational modifications and are essential for various biological phenomena. Herein, we describe the isolation, structural determination, and chemical synthesis of the N-glycan from the hyperthermophilic archaeon Thermococcus kodakarensis. The N-glycan from the organism possesses a unique structure including myo-inositol, which has not been found in previously characterized N-glycans. In this structure, myo-inositol is highly glycosylated and linked with a disaccharide unit through a phosphodiester. The straightforward synthesis of this glycan was accomplished through diastereoselective phosphorylation and phosphodiester construction by SN 2 coupling. Considering the early divergence of hyperthermophilic organisms in evolution, this study can be expected to open the door to approaching the primitive function of glycan modification at the molecular level.


Assuntos
Thermococcus , Inositol/metabolismo , Polissacarídeos/metabolismo
14.
Methods Mol Biol ; 2613: 55-72, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36587070

RESUMO

Self-adjuvanting vaccines, covalent conjugates between antigens and adjuvants, are chemically well-defined compared with conventional vaccines formulated through mixing antigens with adjuvants. Innate immune receptor ligands effectively induce acquired immunity through the activation of innate immunity, thereby enhancing host immune responses. Thus, innate immune receptor ligands are often used as adjuvants in self-adjuvanting vaccines. In a self-adjuvanting vaccine, the covalent linkage of antigen and adjuvant enables their simultaneous uptake into immune cells where the adjuvant consequently induces antigen-specific immune responses. Importantly, self-adjuvanting vaccines do not require immobilization to carrier proteins or co-administration of additional adjuvants and thus avoid inducing undesired immune responses. Because of these excellent properties, self-adjuvanting vaccines are expected to be candidates for next-generation vaccines. Here, we take an overview of vaccine adjuvants, mainly focusing on those utilized in self-adjuvanting vaccines and then we review recent reports on self-adjuvanting conjugate vaccines.


Assuntos
Vacinas , Vacinas Conjugadas , Adjuvantes Imunológicos/química , Adjuvantes Farmacêuticos , Imunidade Inata , Ligantes
15.
Commun Biol ; 5(1): 1290, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36434094

RESUMO

Bacteria and Eucarya utilize the non-oxidative pentose phosphate pathway to direct the ribose moieties of nucleosides to central carbon metabolism. Many archaea do not possess this pathway, and instead, Thermococcales utilize a pentose bisphosphate pathway involving ribose-1,5-bisphosphate (R15P) isomerase and ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco). Intriguingly, multiple genomes from halophilic archaea seem only to harbor R15P isomerase, and do not harbor Rubisco. In this study, we identify a previously unrecognized nucleoside degradation pathway in halophilic archaea, composed of guanosine phosphorylase, ATP-dependent ribose-1-phosphate kinase, R15P isomerase, RuBP phosphatase, ribulose-1-phosphate aldolase, and glycolaldehyde reductase. The pathway converts the ribose moiety of guanosine to dihydroxyacetone phosphate and ethylene glycol. Although the metabolic route from guanosine to RuBP via R15P is similar to that of the pentose bisphosphate pathway in Thermococcales, the downstream route does not utilize Rubisco and is unique to halophilic archaea.


Assuntos
Ribose , Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Ribose/metabolismo , Pentoses/metabolismo , Archaea/genética , Archaea/metabolismo , Guanosina/metabolismo , Fosfatos
16.
RSC Adv ; 12(29): 18985-18993, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35873332

RESUMO

Sialyl-Tn (STn), overexpressed on various tumors, has been investigated for its application in anti-cancer vaccine therapy. However, Theratope, an STn-based vaccine, failed in the phase III clinical trial due to poor immunogenicity and epitope suppression by the foreign carrier protein. We therefore developed a self-adjuvanting STn based-vaccine, a conjugate of clustered STn (triSTn) antigen, TLR1/2 ligand (Pam3CSK4), and T-helper (Th) cell epitope, and found that this three-component self-adjuvanting vaccine effectively resulted in the production of anti-triSTn IgG antibodies. We herein analyzed immune responses induced by this self-adjuvanting vaccine in detail. We newly synthesized two-component vaccines, i.e., Pam3CSK4- or Th epitope-conjugated triSTn, as references to evaluate the immune-stimulating functions of Pam3CSK4 and Th epitope. Immunological evaluation of the synthesized vaccine candidates revealed that Pam3CSK4 was essential for antibody production, indicating that the uptake of triSTn antigen by antigen-presenting cells (APCs) was promoted by the recognition of Pam3CSK4 by TLR1/2. The function of the Th epitope was also confirmed. Th cell activation was important for boosting antibody production and IgG subclass switching. Furthermore, flow cytometric analyses of immune cells, including T cells, B cells, dendritic cells, and other monocytes, were first employed in the evaluation of self-adjuvanting vaccines and revealed that the three-component vaccine was able to induce antigen-specific immune responses for efficient antibody production without excessive inflammatory responses. Importantly, the co-administration of Freund's adjuvants was suggested to cause excessive myeloid cell accumulation and decreased plasma cell differentiation. These results demonstrate that vaccines can be designed to achieve the desired immune responses via the bottom-up construction of each immune element.

17.
Chemistry ; 28(62): e202202284, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-35880578

RESUMO

We describe the synthesis and characterization of a photoactivated boron-based Lewis acid catalyst based on a cage-shaped triphenolic ligand with three pyrenylmethyl moieties. The obtained cage-shaped borate functioned as a photoactivated Lewis acid catalyst thanks to the flexible three pyrenylmethyl moieties. The deformation of the cage-shaped scaffold driven by intramolecular excimer formations of the pyrenes is a critical factor in realizing the photoactivation. Mannich-type reactions and glycosylations significantly were accelerated under 370 nm light irradiations. It is noteworthy that various glycosyl fluorides, which are not easily activated in photocatalytic systems due to their high C-F bond stability, are activated by the photoimproved catalytic activity of the catalyst.


Assuntos
Boratos , Ácidos de Lewis , Ácidos de Lewis/química , Glicosilação , Catálise , Boro
18.
Chemistry ; 28(61): e202201848, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-35880726

RESUMO

We have synthesized B-antigen-displaying dendrimers (16-mers) with different sizes and evaluated their affinity to their IgM antibody in order to investigate which design features lead to effective multivalency. Unexpectedly, the smallest dendrimer, which cannot chelate the multiple binding sites of IgM, clearly exhibited multivalency, together with an affinity similar to or higher than those of the larger dendrimers. These results indicate that the statistical rebinding model, which involves the rapid exchange of clustered glycans, significantly contributes to the multivalency of glycodendrimers. Namely, in the design of glycodendrimers, high-density glycan presentation to enhance statistical rebinding should be considered in addition to the ability to chelate multiple binding sites. This notion stands in contrast to the currently prevailing scientific consensus, which prioritizes the chelation model. This study thus provides new and important guidelines for molecular design of glycodendrimers.


Assuntos
Dendrímeros , Dendrímeros/química , Polissacarídeos , Sítios de Ligação
19.
Org Lett ; 24(1): 6-10, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-34932362

RESUMO

Catalytic glycosylations with glycosyl fluorides using BF3·Et2O are presented. Glycosylations with both armed and disarmed donors were efficiently catalyzed by 1 mol% of BF3·Et2O in a nitrogen-filled glovebox without the use of dehydrating agents. Our finding is in sharp contrast with conventional BF3·Et2O-mediated glycosylations, where excess Lewis acid and additives are required. Mechanistic studies indicated that the chemical species formed by the reaction of in situ generated HF and glass vessels are involved in the catalytic cycle.

20.
Angew Chem Int Ed Engl ; 60(46): 24686-24693, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34520098

RESUMO

The chemical synthesis of a fully sialylated tetraantennary N-glycan has been achieved for the first time by using the diacetyl strategy, in which NHAc is protected as NAc2 to improve reactivity by preventing intermolecular hydrogen bonds. Another key was the glycosylation to the branched mannose in an ether solvent, which promoted the desired glycosylation by stabilizing the oxocarbenium ion intermediate. Furthermore, high α-selectivity of these glycosylation reactions was realized by utilizing remote participation. Two asymmetrically deuterium labeled sialyl N-glycans were also synthesized by the same strategy. The synthesized N-glycans were used to probe the molecular basis of H1N1 neuraminidase recognition. The asymmetrically deuterated N-glycans revealed a difference in the recognition of sialic acid on each branch. Meanwhile, the tetraantennary N-glycan was used to evaluate the effects of multivalency and steric hinderance by forming branching structures.


Assuntos
Neuraminidase/metabolismo , Polissacarídeos/síntese química , Deutério/química , Glicosilação , Vírus da Influenza A Subtipo H1N1/enzimologia , Espectrometria de Massas/métodos , Polissacarídeos/análise , Polissacarídeos/metabolismo , Ácidos Siálicos/análise , Ácidos Siálicos/metabolismo , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...