Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 55(29): 4262-4265, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30906942

RESUMO

The tert-butanol (TBA)-water system is studied in relation to increasing the efficiency of obtaining pharmaceutical powders by freeze-drying. Trehalose was used as a model target product. We report the X-ray diffraction and thermal analysis data which add surprising new information to the phase diagram of this previously repeatedly studied system. The freezing protocol has a strong impact on the specific surface area of the trehalose freeze-dried cakes and on the primary drying time. This is related to a discrepancy between the kinetic and thermodynamic stabilities of several TBA hydrates: di-hydrate (H1), heptahydrate (H2), and decahydrate (H3).


Assuntos
Liofilização , terc-Butil Álcool/química , Estabilidade de Medicamentos , Cinética , Pós , Termodinâmica
2.
Eur J Pharm Sci ; 110: 148-156, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28479348

RESUMO

Large porous particles are becoming increasingly popular as carriers for pulmonary drug delivery with both local and systemic applications. These particles have high geometric diameters (5-30µm) but low bulk density (~0.1g/cm3 or less) such that the aerodynamic diameter remains low (1-5µm). In this study salbutamol and budesonide serve as model inhalable drugs with poor water solubility. A novel method is proposed for the production of dry powder inhaler formulations with enhanced aerosol performance (e.g. for salbutamol-glycine formulation the fine particle fraction (FPF≤4.7µm) value is 67.0±1.3%) from substances that are poorly soluble in water. To overcome the problems related to extremely poor aqueous solubility of the APIs, not individual solvents are used for spray freeze-drying of API solutions, but organic-water mixtures, which can form clathrate hydrates at low temperatures and release APIs or their complexes as fine powders, which form large porous particles after the clathrates are removed by sublimation. Zwitterionic glycine has been used as an additive to API directly in solutions prior to spray freeze-drying, in order to prevent aggregation of powders, to enhance their dispersibility and improve air-flow properties. The clathrate-forming spray freeze-drying process in the multi-component system was optimized using low-temperature powder X-ray diffraction and thermal analysis.


Assuntos
Portadores de Fármacos/química , Glicina/química , Administração por Inalação , Aerossóis/química , Albuterol/química , Budesonida/química , Química Farmacêutica , Composição de Medicamentos , Liberação Controlada de Fármacos , Inaladores de Pó Seco , Excipientes , Liofilização , Humanos , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Porosidade , Pós , Solubilidade , Propriedades de Superfície
3.
J Phys Chem B ; 117(36): 10686-90, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-23944689

RESUMO

The physics of gas hydrates are rich in interesting phenomena such as anomalies for thermal conductivity, self-preservation effects for decomposition, and others. Some of these phenomena are presumably attributed to the resonance interaction of the rattling motions of guest molecules or atoms with the lattice modes. This can be expected to induce some specific features in the low-frequency (THz) vibrational response. Here we present results for low-frequency Raman scattering in a Xe hydrate, supported by numerical calculations of vibrational density of states. A number of narrow lines, located in the range from 18 to 90 cm(-1), were found in the Raman spectrum. Numerical calculations confirm that these lines correspond to resonance modes of the Xe hydrate. Also, low-frequency Raman scattering was studied during gas hydrate decomposition, and two scenarios were observed. The first one is the direct decomposition of the Xe hydrate to water and gas. The second one is the hydrate decomposition to ice and gas with subsequent melting of ice. In the latter case, a transient low-frequency Raman band is observed, which is associated with low-frequency bands (e.g., boson peak) of disordered solids.

4.
J Chem Phys ; 137(6): 065103, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-22897314

RESUMO

Glycine phases formed when aqueous solutions were frozen and subsequently heated under different conditions were studied by Raman scattering, x-ray diffraction, and differential scanning calorimetry (DSC) techniques. Crystallization of ice I(h) was observed in all the cases. On cooling at the rates of 0.5 K∕min and 5 K∕min, glassy glycine was formed as an intermediate phase which lived about 1 min or less only, and then transformed into ß-polymorph of glycine. Quench cooling of glycine solutions (15% w∕w) in liquid nitrogen resulted in the formation of a mixture of crystalline water ice I(h) and a glassy glycine, which could be preserved at cryogenic temperatures (80 K) for an indefinitely long time. This mixture remained also quite stable for some time after heating above the cryogenic temperature. Subsequent heating under various conditions resulted in the transformation of the glycine glass into an unknown crystalline phase (glycine "X-phase") at 209-216 K, which at 218-226 K transformed into ß-polymorph of glycine. The "X-phase" was characterized by Raman spectroscopy; it could be obtained in noticeable amounts using a special preparation technique and tentatively characterized by x-ray powder diffraction (P2, a = 6.648 Å, b = 25.867 Å, c = 5.610 Å, ß = 113.12[ordinal indicator, masculine]); the formation of "X-phase" from the glycine glassy phase and its transformation into ß-polymorph were followed by DSC. Raman scattering technique with its power for unambiguous identification of the crystalline and glassy polymorphs without limitation on the crystallite size helped us to follow the phase transformations during quenching, heating, and annealing. The experimental findings are considered in relation to the problem of control of glycine polymorphism on crystallization.


Assuntos
Glicina/química , Transição de Fase , Água/química , Varredura Diferencial de Calorimetria , Cristalização , Congelamento , Soluções/química , Análise Espectral Raman , Difração de Raios X
5.
J Phys Condens Matter ; 21(38): 385501, 2009 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21832372

RESUMO

In the present paper the results of fitting synchrotron diffraction data are obtained for the intermediate high-pressure phase (9.5 GPa) of the lead selenide based compound Pb(1-x)Sn(x)Se (x = 0.125)-an optoelectronic as well as a thermoelectric material-for two types of lattice symmetries Pnma (space group #62) and Cmcm (space group #63). Both lattice parameters and positions of atoms for the above mentioned structures have been used in calculations of the electron structure of high-pressure phases. The main difference between the electronic properties for Cmcm and Pnma structures established in electronic structure calculations is that in the first one the PbSe compound was found to be a metal, while in the second a small semiconductor gap (E(G) = 0.12 eV) was obtained. Moreover, the forces in the Cmcm structure are an order of magnitude larger than those calculated for the Pnma lattice. In the optimized, Pnma structure within a generalized gradient approximation (GGA), the band gap increases up to E(G) = 0.27 eV. The result coincides with the data on thermoelectric power and electrical resistance data pointing to a semiconductor gap of ∼0.2 eV at ∼9.5 GPa. Thus, the Pmna type of lattice seems to be a preferable version for the intermediate phase compared with the Cmcm one.

6.
J Phys Chem B ; 110(42): 21371-6, 2006 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-17048967

RESUMO

In this work, we present a new, previously unknown type of structure transformation in the high-pressure gas hydrates, which is related to the existence of two different isostructural phases of the sulfur hexafluoride clathrate hydrates. Each of these phases has its own stability field on the phase diagram. The difference between these hydrates consists of partial filling of small D cages by SF(6) molecules in the high-pressure phase; at 900 MPa, about half of small cages are occupied. Our calculations indicate that the increase of population of small cavities is improbable, therefore, at any pressure value, a part of the cavities remains vacant and the packing density is relatively low. This fact allowed us to suppose the existence of the upper pressure limit of hydrate formation in this system; the experimental results obtained confirm this assumption.

7.
J Phys Chem B ; 110(39): 19717-25, 2006 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-17004842

RESUMO

The experimental data on decomposition temperatures for the gas hydrates of ethane, propane, and carbon dioxide dispersed in silica gel mesopores are reported. The studies were performed at pressures up to 1 GPa. It is shown that the experimental dependence of hydrate decomposition temperature on the size of pores that limit the size of hydrate particles can be described on the basis of the Gibbs-Thomson equation only if one takes into account changes in the shape coefficient that is present in the equation; in turn, the value of this coefficient depends on a method of mesopore size determination. A mechanism of hydrate formation in mesoporous medium is proposed. Experimental data providing evidence of the possibility of the formation of hydrate compounds in hydrophobic matrixes under high pressure are reported. Decomposition temperature of those hydrate compounds is higher than that for the bulk hydrates of the corresponding gases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...