Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Dermatol Ther (Heidelb) ; 13(11): 2769-2783, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37768448

RESUMO

INTRODUCTION: Psoriasis is a systemic immune-mediated disease primarily manifesting as skin redness and inflammation. Balneotherapy proved to be a successful non-pharmacological option to reduce the skin areas affected by the disease, but the specific mechanisms underlying this effect have not been elucidated yet. Here we test the hypothesis that the effect of thermal treatments on psoriatic lesions could be partially mediated by changes in the resident microbial population, i.e., the microbiome. METHODS: In this study, we enrolled patients with psoriasis and monitored changes in their skin and gut microbiome after a 12-bath balneotherapy course with a combination of 16S rRNA amplicon sequencing and metagenomics. Changes in the resident microbiome were then correlated with thermal therapy outcomes evaluated as changes in Psoriasis Area and Severity Index (PASI) and Body Surface Area index (BSA). RESULTS: The amplicon sequencing analysis of the skin microbiome showed that after thermal treatment the microbiome composition of affected areas improved to approach that typical of unaffected skin. We moreover identified some low-abundance bacterial biomarkers indicative of disease status and treatment efficacy, and we showed via metagenomic sequencing that thermal treatments and thermal water drinking affect the fecal microbiome to host more species associated with favorable metabolic health. CONCLUSIONS: Changes in lower-abundance microbial taxa presence and abundance could be the basis for the positive effect of thermal water treatment and drinking on the cutaneous and systemic symptomatology of psoriasis.


Psoriasis is an immune-mediated disease primarily manifesting as skin redness and inflammation that affects 2­3% of the world's population. No cure is currently available for this condition, and patients are offered pharmacological and non-pharmacological options to alleviate the discomfort. Previous studies and clinical practice have shown that thermal water treatment can be a non-pharmacological option to reduce the areas affected by the disease. However, the specific mechanisms causing this reduction have not been clarified yet. Given that neither the chemical nor the physical composition of thermal water can explain this beneficial effect, recent studies have suggested that it might be due to the effect of thermal water on the microbial communities living on the skin (i.e., the skin microbiome). In this work carried out at Terme di Comano, Northern Italy, we describe the effect of thermal water treatment on the skin microbiome of patients with psoriasis and we highlight the potentially beneficial effect of thermal water drinking on the microbial communities living in the gut, namely the gut microbiome. Specifically, we show that after balneotherapy the areas affected by psoriasis have a higher diversity of microbes usually present on healthy skin, potentially explaining the reduction in disease severity after treatment, and we describe how the gut microbiome of patients who drank thermal water changes to host more species linked with favorable metabolic health. These findings highlight that thermal water treatment and drinking could reduce both the skin and systemic symptomatology of psoriasis by affecting the skin and gut microbiome.

2.
Environ Sci Pollut Res Int ; 30(48): 106660-106670, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37733200

RESUMO

Crucial information on the pandemic's spread has been gathered by monitoring the trend of SARS-CoV-2 in wastewater. This surveillance has highlighted that the initial concentration is a critical step of the analytical procedure due to the low viral titer that may be present in this matrix. This paper presents the results of the evaluation of two different wastewater concentration protocols to determine the most efficient and cost-effective. The two methods tested were the following: (a) a biphasic separation system with PEG-dextran and (b) a PEG/NaCl precipitation protocol. Other aspects of the detection method were also investigated including the influence of storage temperature on virus recovery and the heat treatment of pasteurization, which aims to make samples safer for operators and the environment. The PEG/NaCl precipitation method was found to perform better than the biphasic separation system, allowing for more sensitive identification of the presence of the virus and the detection of a higher viral titer than that identified with the biphasic separation in all results. Storage of the samples at 4.3±0.2°C for up to 3 weeks did not adversely affect the virus titer and the pasteurization pre-treatment increases operator safety and maintains the identification of the viral concentration.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Cloreto de Sódio , Águas Residuárias , Pasteurização
3.
Cell Rep ; 42(5): 112464, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37141097

RESUMO

Mouse models are key tools for investigating host-microbiome interactions. However, shotgun metagenomics can only profile a limited fraction of the mouse gut microbiome. Here, we employ a metagenomic profiling method, MetaPhlAn 4, which exploits a large catalog of metagenome-assembled genomes (including 22,718 metagenome-assembled genomes from mice) to improve the profiling of the mouse gut microbiome. We combine 622 samples from eight public datasets and an additional cohort of 97 mouse microbiomes, and we assess the potential of MetaPhlAn 4 to better identify diet-related changes in the host microbiome using a meta-analysis approach. We find multiple, strong, and reproducible diet-related microbial biomarkers, largely increasing those identifiable by other available methods relying only on reference information. The strongest drivers of the diet-induced changes are uncharacterized and previously undetected taxa, confirming the importance of adopting metagenomic methods integrating metagenomic assemblies for comprehensive profiling.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Camundongos , Microbiota/genética , Metagenoma , Dieta , Metagenômica/métodos
4.
Curr Biol ; 33(10): 1939-1950.e4, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37116481

RESUMO

The human microbiome seeding starts at birth, when pioneer microbes are acquired mainly from the mother. Mode of delivery, antibiotic prophylaxis, and feeding method have been studied as modulators of mother-to-infant microbiome transmission, but other key influencing factors like modern westernized lifestyles with high hygienization, high-calorie diets, and urban settings, compared with non-westernized lifestyles have not been investigated yet. In this study, we explored the mother-infant sharing of characterized and uncharacterized microbiome members via strain-resolved metagenomics in a cohort of Ethiopian mothers and infants, and we compared them with four other cohorts with different lifestyles. The westernized and non-westernized newborns' microbiomes composition overlapped during the first months of life more than later in life, likely reflecting similar initial breast-milk-based diets. Ethiopian and other non-westernized infants shared a smaller fraction of the microbiome with their mothers than did most westernized populations, despite showing a higher microbiome diversity, and uncharacterized species represented a substantial fraction of those shared in the Ethiopian cohort. Moreover, we identified uncharacterized species belonging to the Selenomonadaceae and Prevotellaceae families specifically present and shared only in the Ethiopian cohort, and we showed that a locally produced fermented food, injera, can contribute to the higher diversity observed in the Ethiopian infants' gut with bacteria that are not part of the human microbiome but are acquired through fermented food consumption. Taken together, these findings highlight the fact that lifestyle can impact the gut microbiome composition not only through differences in diet, drug consumption, and environmental factors but also through its effect on mother-infant strain-sharing patterns.


Assuntos
Microbioma Gastrointestinal , Microbiota , Feminino , Humanos , Lactente , Recém-Nascido , Bactérias , Leite Humano/microbiologia , Mães , Fezes/microbiologia
5.
Nature ; 614(7946): 125-135, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36653448

RESUMO

The human microbiome is an integral component of the human body and a co-determinant of several health conditions1,2. However, the extent to which interpersonal relations shape the individual genetic makeup of the microbiome and its transmission within and across populations remains largely unknown3,4. Here, capitalizing on more than 9,700 human metagenomes and computational strain-level profiling, we detected extensive bacterial strain sharing across individuals (more than 10 million instances) with distinct mother-to-infant, intra-household and intra-population transmission patterns. Mother-to-infant gut microbiome transmission was considerable and stable during infancy (around 50% of the same strains among shared species (strain-sharing rate)) and remained detectable at older ages. By contrast, the transmission of the oral microbiome occurred largely horizontally and was enhanced by the duration of cohabitation. There was substantial strain sharing among cohabiting individuals, with 12% and 32% median strain-sharing rates for the gut and oral microbiomes, and time since cohabitation affected strain sharing more than age or genetics did. Bacterial strain sharing additionally recapitulated host population structures better than species-level profiles did. Finally, distinct taxa appeared as efficient spreaders across transmission modes and were associated with different predicted bacterial phenotypes linked with out-of-host survival capabilities. The extent of microorganism transmission that we describe underscores its relevance in human microbiome studies5, especially those on non-infectious, microbiome-associated diseases.


Assuntos
Bactérias , Transmissão de Doença Infecciosa , Microbioma Gastrointestinal , Ambiente Domiciliar , Microbiota , Boca , Feminino , Humanos , Lactente , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Microbioma Gastrointestinal/genética , Metagenoma , Microbiota/genética , Mães , Boca/microbiologia , Transmissão Vertical de Doenças Infecciosas , Características da Família , Envelhecimento , Fatores de Tempo , Viabilidade Microbiana
6.
Environ Technol Innov ; 28: 102667, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35615435

RESUMO

This paper highlights the extraordinarily rapid spread of SARS-CoV-2 loads in wastewater that during the Omicron wave in December 2021-February 2022, compared with the profiles acquired in 2020-21 with 410 samples from two wastewater treatment plants (Trento+suburbs, 132,500 inhabitants). Monitoring of SARS-CoV-2 in wastewater focused on: (i) 3 samplings/week and analysis, (ii) normalization to calculate genomic units (GU) inh-1 d-1; (iii) calculation of a 7-day moving average to smooth daily fluctuations; (iv) comparison with the 'current active cases'/100,000 inh progressively affected by the mass vaccination. The time profiles of SARS-CoV-2 in wastewater matched the waves of active cases. In February-April 2021, a viral load of 1.0E+07 GU inh-1 d - 1 corresponded to 700 active cases/100,000 inh. In July-September 2021, although the low current active cases, sewage revealed an appreciable SARS-CoV-2 circulation (in this period 2.2E+07 GU inh-1 d-1 corresponded to 90 active cases/100,000 inh). Omicron was not detected in wastewater until mid-December 2021. The Omicron spread caused a 5-6 fold increase of the viral load in two weeks, reaching the highest peak (2.0-2.2E+08 GU inh-1 d-1 and 4500 active cases/100,000 inh) during the pandemic. In this period, wastewater surveillance anticipated epidemiological data by about 6 days. In winter 2021-22, despite the 4-7 times higher viral loads in wastewater, hospitalizations were 4 times lower than in winter 2020-21 due to the vaccination coverage >80%. The Omicron wave demonstrated that SARS-CoV-2 monitoring of wastewater anticipated epidemiological data, confirming its importance in long-term surveillance.

7.
Environ Res ; 207: 112204, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34656637

RESUMO

The fate of Coronaviruses (CoVs) and in particular SARS-CoV-2 in wastewater treatment plants (WWTPs) has not been completely understood yet, but an adequate knowledge on the removal performances in WWTPs could help to prevent waterborne transmission of the virus that is still under debate. CoVs and SARS-CoV-2 are discharged from faeces into the sewer network and reach WWTPs within a few hours. This review presents the fate of SARS-CoV-2 and other CoVs in the primary, secondary and tertiary treatments of WWTPs as well as in sludge treatments. The viral loads decrease progressively along with the treatments from 20 to 3.0E+06 GU/L (Genomic Units/L) in the influent wastewater to concentrations below 2.50E+05 GU/L after secondary biological treatments and finally to negative concentrations (below detection limit) in disinfected effluents. Reduction of CoVs is due to (i) natural decay under unfavourable conditions (solids, microorganisms, temperature) for relatively long hydraulic retention times and (ii) processes of sedimentation, filtration, predation, adsorption, disinfection. In primary and secondary settling, due to the hydrophobic properties, a partial accumulation of CoVs may occur in the separated sludge. In secondary treatment (i.e. activated sludge) CoVs and SARS-CoV-2 loads can be reduced only by about one logarithm (∼90%). To enhance this removal, tertiary treatment with ultrafiltration (Membrane Bioreactors) and chemical disinfection or UV light is needed. CoVs and SARS-CoV-2 in the sludge (1.2E+04-4.6E+08 GU/L) can be inactivated significantly in the thermophilic digestion (55 °C), while mesophilic temperatures (33-37 °C) are not efficient. Additional studies are required to investigate the infectivity of SARS-CoV-2 in WWTPs, especially in view of increasing interest in wastewater reclamation and reuse.


Assuntos
COVID-19 , Purificação da Água , Humanos , SARS-CoV-2 , Esgotos , Águas Residuárias
8.
Genome Biol ; 22(1): 209, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34261503

RESUMO

BACKGROUND: Akkermansia muciniphila is a human gut microbe with a key role in the physiology of the intestinal mucus layer and reported associations with decreased body mass and increased gut barrier function and health. Despite its biomedical relevance, the genomic diversity of A. muciniphila remains understudied and that of closely related species, except for A. glycaniphila, unexplored. RESULTS: We present a large-scale population genomics analysis of the Akkermansia genus using 188 isolate genomes and 2226 genomes assembled from 18,600 metagenomes from humans and other animals. While we do not detect A. glycaniphila, the Akkermansia strains in the human gut can be grouped into five distinct candidate species, including A. muciniphila, that show remarkable whole-genome divergence despite surprisingly similar 16S rRNA gene sequences. These candidate species are likely human-specific, as they are detected in mice and non-human primates almost exclusively when kept in captivity. In humans, Akkermansia candidate species display ecological co-exclusion, diversified functional capabilities, and distinct patterns of associations with host body mass. Analysis of CRISPR-Cas loci reveals new variants and spacers targeting newly discovered putative bacteriophages. Remarkably, we observe an increased relative abundance of Akkermansia when cognate predicted bacteriophages are present, suggesting ecological interactions. A. muciniphila further exhibits subspecies-level genetic stratification with associated functional differences such as a putative exo/lipopolysaccharide operon. CONCLUSIONS: We uncover a large phylogenetic and functional diversity of the Akkermansia genus in humans. This variability should be considered in the ongoing experimental and metagenomic efforts to characterize the health-associated properties of A. muciniphila and related bacteria.


Assuntos
Microbioma Gastrointestinal/genética , Genoma Bacteriano , Metagenoma , Filogenia , Akkermansia/classificação , Akkermansia/genética , Akkermansia/metabolismo , Akkermansia/virologia , Animais , Bacteriófagos/crescimento & desenvolvimento , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Variação Genética , Humanos , Camundongos , Óperon , RNA Ribossômico 16S/genética
9.
Sci Total Environ ; 743: 140444, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32649988

RESUMO

SARS-CoV-2, the virus that causes COVID-19, has been found in the faeces of infected patients in numerous studies. Stool may remain positive for SARS-CoV-2, even when the respiratory tract becomes negative, and the interaction with the gastrointestinal tract poses a series of questions about wastewater and its treatments. This review aims to understand the viral load of SARS-CoV-2 in faeces and sewage and its fate in wastewater treatment plants (WWTPs). The viral load in the faeces of persons testing positive for SARS-CoV-2 was estimated at between 5·103 to 107.6 copies/mL, depending on the infection course. In the sewerage, faeces undergo dilution and viral load decreases considerably in the wastewater entering a WWTP with a range from 2 copies/100 mL to 3·103 copies/mL, depending on the level of the epidemic. Monitoring of SARS-CoV-2 in sewage, although no evidence of COVID-19 transmission has been found via this route, could be advantageously exploited as an early warning of outbreaks. Preliminary studies on WBE seem promising; but high uncertainty of viral loads in wastewater and faeces remains, and further research is needed. The detection of SARS-CoV-2 in sewage, based on RNA sequences and RT-PCR, requires a shared approach on sample pre-treatment and on-site collection to ensure comparable results. The finding of viral RNA in stools does not imply that the virus is viable and infectious. Viability of CoVs such as SARS-CoV-2 decreases in wastewater - due to temperature, pH, solids, micropollutants - but high inactivation in WWTPs can be obtained only by using disinfection (free chlorine, UVC light). A reduction in the quantity of disinfectants can be obtained by implementing Membrane-Bioreactors with ultrafiltration to separate SARS-CoV-2 virions with a size of 60-140 nm. In sludge treatment, thermophilic digestion is effective, based on the general consensus that CoVs are highly sensitive to increased temperatures.


Assuntos
Betacoronavirus , Infecções por Coronavirus , Pandemias , Pneumonia Viral , Águas Residuárias , COVID-19 , Fezes , Humanos , SARS-CoV-2
10.
Genome Biol ; 21(1): 138, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513234

RESUMO

BACKGROUND: Eubacterium rectale is one of the most prevalent human gut bacteria, but its diversity and population genetics are not well understood because large-scale whole-genome investigations of this microbe have not been carried out. RESULTS: Here, we leverage metagenomic assembly followed by a reference-based binning strategy to screen over 6500 gut metagenomes spanning geography and lifestyle and reconstruct over 1300 E. rectale high-quality genomes from metagenomes. We extend previous results of biogeographic stratification, identifying a new subspecies predominantly found in African individuals and showing that closely related non-human primates do not harbor E. rectale. Comparison of pairwise genetic and geographic distances between subspecies suggests that isolation by distance and co-dispersal with human populations might have contributed to shaping the contemporary population structure of E. rectale. We confirm that a relatively recently diverged E. rectale subspecies specific to Europe consistently lacks motility operons and that it is immotile in vitro, probably due to ancestral genetic loss. The same subspecies exhibits expansion of its carbohydrate metabolism gene repertoire including the acquisition of a genomic island strongly enriched in glycosyltransferase genes involved in exopolysaccharide synthesis. CONCLUSIONS: Our study provides new insights into the population structure and ecology of E. rectale and shows that shotgun metagenomes can enable population genomics studies of microbiota members at a resolution and scale previously attainable only by extensive isolate sequencing.


Assuntos
Eubacterium/genética , Microbioma Gastrointestinal , Genoma Bacteriano , Adolescente , Adulto , Idoso , Metabolismo dos Carboidratos/genética , Criança , Pré-Escolar , Glicosiltransferases/genética , Humanos , Lactente , Metagenoma , Pessoa de Meia-Idade , Filogeografia , Adulto Jovem
11.
Nat Commun ; 11(1): 2500, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32427907

RESUMO

Microbial genomes are available at an ever-increasing pace, as cultivation and sequencing become cheaper and obtaining metagenome-assembled genomes (MAGs) becomes more effective. Phylogenetic placement methods to contextualize hundreds of thousands of genomes must thus be efficiently scalable and sensitive from closely related strains to divergent phyla. We present PhyloPhlAn 3.0, an accurate, rapid, and easy-to-use method for large-scale microbial genome characterization and phylogenetic analysis at multiple levels of resolution. PhyloPhlAn 3.0 can assign genomes from isolate sequencing or MAGs to species-level genome bins built from >230,000 publically available sequences. For individual clades of interest, it reconstructs strain-level phylogenies from among the closest species using clade-specific maximally informative markers. At the other extreme of resolution, it scales to large phylogenies comprising >17,000 microbial species. Examples including Staphylococcus aureus isolates, gut metagenomes, and meta-analyses demonstrate the ability of PhyloPhlAn 3.0 to support genomic and metagenomic analyses.


Assuntos
Bactérias/genética , Genoma Bacteriano , Metagenômica/métodos , Filogenia , Bactérias/classificação , Bactérias/isolamento & purificação , Genoma Microbiano , Metagenoma
12.
Genome Biol ; 20(1): 299, 2019 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-31883524

RESUMO

BACKGROUND: Humans have coevolved with microbial communities to establish a mutually advantageous relationship that is still poorly characterized and can provide a better understanding of the human microbiome. Comparative metagenomic analysis of human and non-human primate (NHP) microbiomes offers a promising approach to study this symbiosis. Very few microbial species have been characterized in NHP microbiomes due to their poor representation in the available cataloged microbial diversity, thus limiting the potential of such comparative approaches. RESULTS: We reconstruct over 1000 previously uncharacterized microbial species from 6 available NHP metagenomic cohorts, resulting in an increase of the mappable fraction of metagenomic reads by 600%. These novel species highlight that almost 90% of the microbial diversity associated with NHPs has been overlooked. Comparative analysis of this new catalog of taxa with the collection of over 150,000 genomes from human metagenomes points at a limited species-level overlap, with only 20% of microbial candidate species in NHPs also found in the human microbiome. This overlap occurs mainly between NHPs and non-Westernized human populations and NHPs living in captivity, suggesting that host lifestyle plays a role comparable to host speciation in shaping the primate intestinal microbiome. Several NHP-specific species are phylogenetically related to human-associated microbes, such as Elusimicrobia and Treponema, and could be the consequence of host-dependent evolutionary trajectories. CONCLUSIONS: The newly reconstructed species greatly expand the microbial diversity associated with NHPs, thus enabling better interrogation of the primate microbiome and empowering in-depth human and non-human comparative and co-diversification studies.


Assuntos
Microbioma Gastrointestinal , Metagenoma , Primatas/microbiologia , Animais , Humanos , Filogenia , Treponema/genética
14.
Nat Med ; 25(4): 667-678, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30936548

RESUMO

Several studies have investigated links between the gut microbiome and colorectal cancer (CRC), but questions remain about the replicability of biomarkers across cohorts and populations. We performed a meta-analysis of five publicly available datasets and two new cohorts and validated the findings on two additional cohorts, considering in total 969 fecal metagenomes. Unlike microbiome shifts associated with gastrointestinal syndromes, the gut microbiome in CRC showed reproducibly higher richness than controls (P < 0.01), partially due to expansions of species typically derived from the oral cavity. Meta-analysis of the microbiome functional potential identified gluconeogenesis and the putrefaction and fermentation pathways as being associated with CRC, whereas the stachyose and starch degradation pathways were associated with controls. Predictive microbiome signatures for CRC trained on multiple datasets showed consistently high accuracy in datasets not considered for model training and independent validation cohorts (average area under the curve, 0.84). Pooled analysis of raw metagenomes showed that the choline trimethylamine-lyase gene was overabundant in CRC (P = 0.001), identifying a relationship between microbiome choline metabolism and CRC. The combined analysis of heterogeneous CRC cohorts thus identified reproducible microbiome biomarkers and accurate disease-predictive models that can form the basis for clinical prognostic tests and hypothesis-driven mechanistic studies.


Assuntos
Colina/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/microbiologia , Metagenômica , Biomarcadores Tumorais/metabolismo , Estudos de Coortes , Neoplasias Colorretais/diagnóstico , Bases de Dados Genéticas , Microbioma Gastrointestinal , Humanos , Liases/genética , Liases/metabolismo , Especificidade da Espécie
15.
PLoS One ; 14(3): e0213497, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30901344

RESUMO

BACKGROUND: Few studies, based on a limited number of patients using non-uniform therapeutic protocols, have analyzed Methicillin-resistant Staphylococcus aureus (MRSA) eradication. METHODS: In a randomized multicenter trial conducted on patients with new-onset MRSA infection we evaluated the efficacy of an early eradication treatment (arm A) compared with an observational group (B). Arm A received oral rifampicin and trimethoprim/sulfamethoxazole (21 days). Patients' microbiological status, FEV1, BMI, pulmonary exacerbations and use of antibiotics were assessed. RESULTS: Sixty-one patients were randomized. Twenty-nine (47.5%) patients were assigned to active arm A and 32 (52.5%) patients to observational arm B. Twenty-nine (47.5%) patients, 10 patients in arm A and 19 in arm B, dropped out of the study. At 6 months MRSA was eradicated in 12 (63.2%) out of 19 patients in arm A while spontaneous clearance was observed in 5 (38.5%) out of 13 patients in arm B. A per-protocol analysis showed a 24.7% difference in the proportion of MRSA clearance between the two groups (z = 1.37, P(Z>z) = 0.08). Twenty-seven patients, 15 (78.9%) out of 19 in arm A and 12 (92.3%) out of 13 in arm B, were able to perform spirometry. The mean (±SD) FEV1 change from baseline was 7.13% (±14.92) in arm A and -1.16% (±5.25) in arm B (p = 0.08). In the same period the BMI change (mean ±SD) from baseline was 0.54 (±1.33) kg/m2 in arm A and -0.38 (±1.56) kg/m2 in arm B (p = 0.08). At 6 months no statistically significant differences regarding the number of pulmonary exacerbations, days spent in hospital and use of antibiotics were observed between the two arms. CONCLUSIONS: Although the statistical power of the study is limited, we found a 24.7% higher clearance of MRSA in the active arm than in the observational arm at 6 months. Patients in the active arm A also had favorable FEV1 and BMI tendencies.


Assuntos
Antibacterianos/administração & dosagem , Fibrose Cística/tratamento farmacológico , Staphylococcus aureus Resistente à Meticilina , Rifampina/administração & dosagem , Infecções Estafilocócicas/tratamento farmacológico , Combinação Trimetoprima e Sulfametoxazol/administração & dosagem , Adolescente , Adulto , Criança , Pré-Escolar , Fibrose Cística/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Infecções Estafilocócicas/fisiopatologia , Fatores de Tempo
16.
Cell ; 176(3): 649-662.e20, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30661755

RESUMO

The body-wide human microbiome plays a role in health, but its full diversity remains uncharacterized, particularly outside of the gut and in international populations. We leveraged 9,428 metagenomes to reconstruct 154,723 microbial genomes (45% of high quality) spanning body sites, ages, countries, and lifestyles. We recapitulated 4,930 species-level genome bins (SGBs), 77% without genomes in public repositories (unknown SGBs [uSGBs]). uSGBs are prevalent (in 93% of well-assembled samples), expand underrepresented phyla, and are enriched in non-Westernized populations (40% of the total SGBs). We annotated 2.85 M genes in SGBs, many associated with conditions including infant development (94,000) or Westernization (106,000). SGBs and uSGBs permit deeper microbiome analyses and increase the average mappability of metagenomic reads from 67.76% to 87.51% in the gut (median 94.26%) and 65.14% to 82.34% in the mouth. We thus identify thousands of microbial genomes from yet-to-be-named species, expand the pangenomes of human-associated microbes, and allow better exploitation of metagenomic technologies.


Assuntos
Metagenoma/genética , Metagenômica/métodos , Microbiota/genética , Big Data , Variação Genética/genética , Geografia , Humanos , Estilo de Vida , Filogenia , Análise de Sequência de DNA/métodos
17.
Genome Med ; 10(1): 82, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30424799

RESUMO

BACKGROUND: Staphylococcus aureus is an opportunistic pathogen and a leading cause of nosocomial infections. It can acquire resistance to all the antibiotics that entered the clinics to date, and the World Health Organization defined it as a high-priority pathogen for research and development of new antibiotics. A deeper understanding of the genetic variability of S. aureus in clinical settings would lead to a better comprehension of its pathogenic potential and improved strategies to contrast its virulence and resistance. However, the number of comprehensive studies addressing clinical cohorts of S. aureus infections by simultaneously looking at the epidemiology, phylogenetic reconstruction, genomic characterisation, and transmission pathways of infective clones is currently low, thus limiting global surveillance and epidemiological monitoring. METHODS: We applied whole-genome shotgun sequencing (WGS) to 184 S. aureus isolates from 135 patients treated in different operative units of an Italian paediatric hospital over a timespan of 3 years, including both methicillin-resistant S. aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) from different infection types. We typed known and unknown clones from their genomes by multilocus sequence typing (MLST), Staphylococcal Cassette Chromosome mec (SCCmec), Staphylococcal protein A gene (spa), and Panton-Valentine Leukocidin (PVL), and we inferred their whole-genome phylogeny. We explored the prevalence of virulence and antibiotic resistance genes in our cohort, and the conservation of genes encoding vaccine candidates. We also performed a timed phylogenetic investigation for a potential outbreak of a newly emerging nosocomial clone. RESULTS: The phylogeny of the 135 single-patient S. aureus isolates showed a high level of diversity, including 80 different lineages, and co-presence of local, global, livestock-associated, and hypervirulent clones. Five of these clones do not have representative genomes in public databases. Variability in the epidemiology is mirrored by variability in the SCCmec cassettes, with some novel variants of the type IV cassette carrying extra antibiotic resistances. Virulence and resistance genes were unevenly distributed across different clones and infection types, with highly resistant and lowly virulent clones showing strong association with chronic diseases, and highly virulent strains only reported in acute infections. Antigens included in vaccine formulations undergoing clinical trials were conserved at different levels in our cohort, with only a few highly prevalent genes fully conserved, potentially explaining the difficulty of developing a vaccine against S. aureus. We also found a recently diverged ST1-SCCmecIV-t127 PVL- clone suspected to be hospital-specific, but time-resolved integrative phylogenetic analysis refuted this hypothesis and suggested that this quickly emerging lineage was acquired independently by patients. CONCLUSIONS: Whole genome sequencing allowed us to study the epidemiology and genomic repertoire of S. aureus in a clinical setting and provided evidence of its often underestimated complexity. Some virulence factors and clones are specific of disease types, but the variability and dispensability of many antigens considered for vaccine development together with the quickly changing epidemiology of S. aureus makes it very challenging to develop full-coverage therapies and vaccines. Expanding WGS-based surveillance of S. aureus to many more hospitals would allow the identification of specific strains representing the main burden of infection and therefore reassessing the efforts for the discovery of new treatments and clinical practices.


Assuntos
Genoma Bacteriano , Hospitais Pediátricos , Filogenia , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/genética , Staphylococcus aureus/classificação , Staphylococcus aureus/genética , Doença Aguda , Sequência de Bases , Teorema de Bayes , Criança , Doença Crônica , Sequência Conservada , Farmacorresistência Bacteriana/genética , Genes Bacterianos , Humanos , Itália/epidemiologia , Funções Verossimilhança , Vacinas Antiestafilocócicas/imunologia , Staphylococcus aureus/patogenicidade , Fatores de Virulência/metabolismo
18.
Cell Host Microbe ; 24(1): 133-145.e5, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-30001516

RESUMO

The acquisition and development of the infant microbiome are key to establishing a healthy host-microbiome symbiosis. The maternal microbial reservoir is thought to play a crucial role in this process. However, the source and transmission routes of the infant pioneering microbes are poorly understood. To address this, we longitudinally sampled the microbiome of 25 mother-infant pairs across multiple body sites from birth up to 4 months postpartum. Strain-level metagenomic profiling showed a rapid influx of microbes at birth followed by strong selection during the first few days of life. Maternal skin and vaginal strains colonize only transiently, and the infant continues to acquire microbes from distinct maternal sources after birth. Maternal gut strains proved more persistent in the infant gut and ecologically better adapted than those acquired from other sources. Together, these data describe the mother-to-infant microbiome transmission routes that are integral in the development of the infant microbiome.


Assuntos
DNA Bacteriano/genética , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/microbiologia , Relações Mãe-Filho , Adulto , Fezes/microbiologia , Feminino , Humanos , Lactente , Estudos Longitudinais , Metagenômica , Pessoa de Meia-Idade , Boca/microbiologia , Pele/microbiologia , Fatores de Tempo , Vagina/microbiologia
19.
mSystems ; 2(1)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28144631

RESUMO

The gut microbiome becomes shaped in the first days of life and continues to increase its diversity during the first months. Links between the configuration of the infant gut microbiome and infant health are being shown, but a comprehensive strain-level assessment of microbes vertically transmitted from mother to infant is still missing. We collected fecal and breast milk samples from multiple mother-infant pairs during the first year of life and applied shotgun metagenomic sequencing followed by computational strain-level profiling. We observed that several specific strains, including those of Bifidobacterium bifidum, Coprococcus comes, and Ruminococcus bromii, were present in samples from the same mother-infant pair, while being clearly distinct from those carried by other pairs, which is indicative of vertical transmission. We further applied metatranscriptomics to study the in vivo gene expression of vertically transmitted microbes and found that transmitted strains of Bacteroides and Bifidobacterium species were transcriptionally active in the guts of both adult and infant. By combining longitudinal microbiome sampling and newly developed computational tools for strain-level microbiome analysis, we demonstrated that it is possible to track the vertical transmission of microbial strains from mother to infants and to characterize their transcriptional activity. Our work provides the foundation for larger-scale surveys to identify the routes of vertical microbial transmission and its influence on postinfancy microbiome development. IMPORTANCE Early infant exposure is important in the acquisition and ultimate development of a healthy infant microbiome. There is increasing support for the idea that the maternal microbial reservoir is a key route of microbial transmission, and yet much is inferred from the observation of shared species in mother and infant. The presence of common species, per se, does not necessarily equate to vertical transmission, as species exhibit considerable strain heterogeneity. It is therefore imperative to assess whether shared microbes belong to the same genetic variant (i.e., strain) to support the hypothesis of vertical transmission. Here we demonstrate the potential of shotgun metagenomics and strain-level profiling to identify vertical transmission events. Combining these data with metatranscriptomics, we show that it is possible not only to identify and track the fate of microbes in the early infant microbiome but also to investigate the actively transcribing members of the community. These approaches will ultimately provide important insights into the acquisition, development, and community dynamics of the infant microbiome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...