Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 9(2)2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30781394

RESUMO

Novel thin film composite (TFC) polyamide (PA) membranes blended with 0.01⁻0.2 wt.% of Acacia gum (AG) have been prepared using the interfacial polymerization technique. The properties of the prepared membranes were evaluated using contact angle, zeta potential measurements, Raman spectroscopy, scanning electron microscopy, and surface profilometer. It was found that the use of AG as an additive to TFC PA membranes increased the membrane's hydrophilicity (by 45%), surface charge (by 16%) as well as water flux (by 1.2-fold) compared with plain PA membrane. In addition, the prepared PA/AG membranes possessed reduced surface roughness (by 63%) and improved antifouling behavior while maintaining NaCl rejection above 96%. The TFC PA/AG membranes were tested with seawater collected from the Arabian Gulf and showed higher salt rejection and lower flux decline during filtration when compared to commercial membranes (GE Osmonics and Dow SW30HR). These findings indicate that AG can be used as an efficient additive to enhance the properties of TFC PA membranes.

2.
Membranes (Basel) ; 9(2)2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30769800

RESUMO

Polysulfone (PS) membranes blended with different loadings of arabic gum (AG) were synthesized using phase inversion method and the antibacterial properties of the synthesized membranes were tested using a number Gram-negative (Escherichia coli, Klebsiella pneumonia and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacterial species. It was shown that AG addition to the dope polymer solutions essentially changed porous structure, hydrophilicity and zeta potential of the cast PS/AG membranes. These changes were due to the amphiphilic properties of AG macromolecules that contained negatively charged hydrophilic residues. A pronounced decrease in bacterial attachment was seen in the field emission scanning electron microscopy (FESEM) images for PS/AG membrane samples compared to both commercial (Microdyn-Nadir) and bare PS (without AG) membranes. AG loading dependent trend was observed where the prevention of bacterial colonization on the membrane surface was strongest at the highest (7 wt. %) AG loading in the casting solution. Possible mechanisms for the prevention of bacterial colonization were discussed. Significantly, the inhibition of bacterial attachment and growth on PS/AG membranes was observed for both Gram-positive and Gram-negative bacterial models, rendering these novel membranes with strong biofouling resistance attractive for water treatment applications.

3.
Membranes (Basel) ; 8(4)2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30428620

RESUMO

In this work, novel polysulphone (PS) porous membranes for water desalination, incorporated with commercial and produced carbon nanotubes (CNT), were fabricated and analyzed. It was demonstrated that changing the main characteristics of CNT (e.g., loading in the dope solutions, aspect ratio, and functionality) significantly affected the membrane properties and performance including porosity, water flux, and mechanical and surface properties. The water flux of the fabricated membranes increased considerably (up to 20 times) along with the increase in CNT loading. Conversely, yield stress and Young's modulus of the membranes dropped with the increase in the CNT loading mainly due to porosity increase. It was shown that the elongation at fracture for PS/0.25 wt. % CNT membrane was much higher than for pristine PS membrane due to enhanced compatibility of commercial CNTs with PS matrix. More pronounced effect on membrane's mechanical properties was observed due to compatibility of CNTs with PS matrix when compared to other factors (i.e., changes in the CNT aspect ratio). The water contact angle for PS membranes incorporated with commercial CNT sharply decreased from 73° to 53° (membrane hydrophilization) for membranes with 0.1 and 1.0 wt. % of CNTs, while for the same loading of produced CNTs the water contact angles for the membrane samples increased from 66° to 72°. The obtained results show that complex interplay of various factors such as: loading of CNT in the dope solutions, aspect ratio, and functionality of CNT. These features can be used to engineer membranes with desired properties and performance.

4.
Materials (Basel) ; 11(5)2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29772760

RESUMO

Carbon nanomaterials have been extensively used in many applications owing to their unique thermal, electrical and mechanical properties. One of the prime challenges is the production of these nanomaterials on a large scale. This review paper summarizes the synthesis of various carbon nanomaterials via the chemical vapor deposition (CVD) method. These carbon nanomaterials include fullerenes, carbon nanotubes (CNTs), carbon nanofibers (CNFs), graphene, carbide-derived carbon (CDC), carbon nano-onion (CNO) and MXenes. Furthermore, current challenges in the synthesis and application of these nanomaterials are highlighted with suggested areas for future research.

5.
Sci Rep ; 7(1): 15831, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29158521

RESUMO

Novel polyethersulfone (PES) membranes blended with 0.1-3.0 wt. % of Acacia gum (AG) as a pore-former and antifouling agent were fabricated using phase inversion technique. The effect of AG on the pore-size, porosity, surface morphology, surface charge, hydrophilicity, and mechanical properties of PES/AG membranes was studied by scanning electron microscopy (SEM), Raman spectroscopy, contact angle and zeta potential measurements. The antifouling -properties of PES/AG membranes were evaluated using Escherichia coli bacteria and bovine serum albumine (BSA). The use of AG as an additive to PES membranes was found to increase the surface charge, hydrophilicity (by 20%), porosity (by 77%) and permeate flux (by about 130%). Moreover, PES/AG membranes demonstrated higher antifouling and tensile stress (by 31%) when compared to pure PES membranes. It was shown that the prepared PES/AG membranes efficiently removed lead ions from aqueous solutions. Both the sieving mechanism of the membrane and chelation of lead with AG macromolecules incorporated in the membrane matrix contributed to lead removal. The obtained results indicated that AG can be used as a novel pore-former, hydrophilizing and antifouling agent, as well as an enhancer to the mechanical and rejection properties of the PES membranes.

6.
Chemosphere ; 164: 142-155, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27588573

RESUMO

Oil removal from water is a highly important area due to the large production rate of emulsified oil in water, which is considered one of the major pollutants, having a negative effect on human health, environment and wildlife. In this study, we have reported the application of high quality carbon nanotube bundles produced by an injected vertical chemical vapor deposition (IV-CVD) reactor for oil removal. High quality, bundles, super hydrophobic, and high aspect ratio carbon nanotubes were produced. The average diameters of the produced CNTs ranged from 20 to 50 nm while their lengths ranged from 300 to 500 µm. Two types of CNTs namely, P-CNTs and C-CNTs, (Produced CNTs from the IV-CVD reactor and commercial CNTs) were used for oil removal from water. For the first time, thermogravimetric analysis (TGA) was conducted to measure maximum oil uptake using CNT and it was found that P-CNT can take oil up to 17 times their weight. The effect of adsorbent dosage, contact time, and agitation speed were examined on the oil spill clean-up efficiency using batch sorption experiments. Higher efficiency with almost 97% removal was achieved using P-CNTs compared to 87% removal using C-CNTs.


Assuntos
Nanotubos de Carbono/química , Poluição por Petróleo , Poluentes Químicos da Água/química , Adsorção , Interações Hidrofóbicas e Hidrofílicas , Nanotubos de Carbono/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...