Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 9(29): 24778-24787, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28671835

RESUMO

Due to a still limited understanding of the reasons making 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (Spiro-OMeTAD) the state-of-the-art hole-transporting material (HTM) for emerging photovoltaic applications, the molecular tailoring of organic components for perovskite solar cells (PSCs) lacks in solid design criteria. Charge delocalization in radical cationic states can undoubtedly be considered as one of the essential prerequisites for an HTM, but this aspect has been investigated to a relatively minor extent. In marked contrast with the 3-D structure of Spiro-OMeTAD, truxene-based HTMs Trux1 and Trux2 have been employed for the first time in PSCs fabricated with a direct (n-i-p) or inverted (p-i-n) architecture, exhibiting a peculiar behavior with respect to the referential HTM. Notwithstanding the efficient hole extraction from the perovskite layer exhibited by Trux1 and Trux2 in direct configuration devices, their photovoltaic performances were detrimentally affected by their poor hole transport. Conversely, an outstanding improvement of the photovoltaic performances in dopant-free inverted configuration devices compared to Spiro-OMeTAD was recorded, ascribable to the use of thinner HTM layers. The rationalization of the photovoltaic performances exhibited by different configuration devices discussed in this paper can provide new and unexpected prospects for engineering the interface between the active layer of perovskite-based solar cells and the hole transporters.

2.
ACS Nano ; 11(4): 3576-3584, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28328197

RESUMO

The reliable exploitation of localized surface plasmon resonance in transparent conductive oxides is being pursued to push the developement of an emerging class of advanced dynamic windows, which offer the opportunity to selectively and dynamically control the intensity of the incoming thermal radiation without affecting visible transparency. In this view, Nb-doped TiO2 colloidal nanocrystals are particularly promising, as they have a wide band gap and their plasmonic features can be finely tailored across the near-infrared region by varying the concentration of dopants. Four batches of Nb-doped TiO2 nanocrystals with different doping levels (from 0% to 15% of niobium content) have been used here to prepare highly transparent mesoporous electrodes for near-infrared selective electrochromic devices, capable of dynamically modulating the intensity of the transmitted radiation upon the application of a relatively small bias voltage. An engineered dual band electrochromic device (made of 10%-Nb-doped TiO2 nanocrystals) has been eventually fabricated. It was shown to provide two complementary spectroelectrochemical responses, which can be independently controlled through the intensity of the applied potential: a large variation of the optical transmittance in the near-infrared region (by the intensification of the localized surface plasmon scattering) was achievable in the 0-3 V voltage window, reaching values greater than 64% in the spectral range from 800 to 2000 nm, whereas the visible absorption could also be intensively varied at higher potentials (from 3 to 4 V), driven by Li intercalation into the TiO2 anatase lattice.

3.
J Am Chem Soc ; 139(3): 1198-1206, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28005337

RESUMO

We report the colloidal synthesis of ∼5.5 nm inverse spinel-type oxide Ga2FeO4 (GFO) nanocrystals (NCs) with control over the gallium and iron content. As recently theoretically predicted, some classes of spinel-type oxide materials can be intrinsically doped by means of structural disorder and/or change in stoichiometry. Here we show that, indeed, while stoichiometric Ga2FeO4 NCs are intrinsic small bandgap semiconductors, off-stoichiometric GFO NCs, produced under either Fe-rich or Ga-rich conditions, behave as degenerately doped semiconductors. As a consequence of the generation of free carriers, both Fe-rich and Ga-rich GFO NCs exhibit a localized surface plasmon resonance in the near-infrared at ∼1000 nm, as confirmed by our pump-probe absorption measurements. Noteworthy, the photoelectrochemical characterization of our GFO NCs reveal that the majority carriers are holes in Fe-rich samples, and electrons in Ga-rich ones, highlighting the bipolar nature of this material. The behavior of such off-stoichiometric NCs was explained by our density functional theory calculations as follows: the substitution of Ga3+ by Fe2+ ions, occurring in Fe-rich conditions, can generate free holes (p-type doping), while the replacement of Fe2+ by Ga3+ cations, taking place in Ga-rich samples, produces free electrons (n-type doping). These findings underscore the potential relevance of spinel-type oxides as p-type transparent conductive oxides and as plasmonic semiconductors.

4.
Nanoscale ; 8(48): 20056-20065, 2016 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-27892590

RESUMO

Recent developments in the exploitation of transparent conductive oxide nanocrystals paved the way to the realization of a new class of electrochemical systems capable of selectively shielding the infrared heat loads carried by sunlight and prospected the blooming of a key enabling technology to be implemented in the next generation of "zero-energy" building envelopes. Here we report the fabrication of a set of electrochromic devices embodying an engineered nanostructured electrode made by high aspect-ratio tungsten oxide nanorods, which allow for selectively and dynamically controlling sunlight transmission over the near-infrared to visible range. Varying the intensity of applied voltage makes the spectral response of the device change across three different optical regimes, namely fully transparent, near-infrared only blocking and both visible and near-infrared blocking. It is demonstrated that the degree of reversible modulation of the thermal radiation entering the glazing element can approach a remarkable 85%, accompanied by only a modest reduction in the luminous transmittance.

5.
Inorg Chem ; 55(11): 5245-53, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27212146

RESUMO

A tetracoordinated redox couple, made by [Cu(2-mesityl-4,7-dimethyl-1,10-phenanthroline)2][PF6], 1, and its Cu(II) form [Cu(2-mesityl-4,7-dimethyl-1,10-phenanthroline)2][PF6]2, 2, has been synthesized, and its electrochemical and photochemical features have been investigated and compared with those of a previously published Cu(2+)/Cu(+) redox shuttle, namely, [Cu(2,9-dimethyl-1,10-phenanthroline)2][PF6], 3, and its pentacoordinated oxidized form [Cu(2,9-dimethyl-1,10-phenanthroline)2Cl][PF6], 4. The detrimental effect of the fifth Cl(-) ancillary ligand on the charge transfer kinetics of the redox shuttles has been exhaustively demonstrated. Appropriately balanced Cu-based electrolytes have been then formulated and tested in dye solar cells in combination with a π-extended benzothiadiazole dye. The bis-phenanthroline Cu-complexes, 1 and 2, have been found to provide an overall 4.4% solar energy conversion efficiency, which is more than twice that of the literature benchmark couple, 3 and 4, employing a Cl-coordinated oxidized species and even comparable with the performances of a I(-)/I3(-) electrolyte of analogous concentration. A fast counter-electrode reaction, due to the excellent electrochemical reversibility of 2, and a high electron collection efficiency, allowed through the efficient dye regeneration kinetics exerted by 1, represents two major characteristics of these copper-based electron mediators and may constitute a pivotal step toward the development of a next generation of copper-based efficient iodine-free redox shuttles.

6.
Chemphyschem ; 17(5): 699-709, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26756645

RESUMO

We have developed a general X-ray powder diffraction (XPD) methodology for the simultaneous structural and compositional characterization of inorganic nanomaterials. The approach is validated on colloidal tungsten oxide nanocrystals (WO3-x NCs), as a model polymorphic nanoscale material system. Rod-shaped WO3-x NCs with different crystal structure and stoichiometry are comparatively investigated under an inert atmosphere and after prolonged air exposure. An initial structural model for the as-synthesized NCs is preliminarily identified by means of Rietveld analysis against several reference crystal phases, followed by atomic pair distribution function (PDF) refinement of the best-matching candidates (static analysis). Subtle stoichiometry deviations from the corresponding bulk standards are revealed. NCs exposed to air at room temperature are monitored by XPD measurements at scheduled time intervals. The static PDF analysis is complemented with an investigation into the evolution of the WO3-x NC structure, performed by applying the modulation enhanced diffraction technique to the whole time series of XPD profiles (dynamical analysis). Prolonged contact with ambient air is found to cause an appreciable increase in the static disorder of the O atoms in the WO3-x NC lattice, rather than a variation in stoichiometry. The time behavior of such structural change is identified on the basis of multivariate analysis.

7.
Chem Commun (Camb) ; 51(28): 6092-5, 2015 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-25742721

RESUMO

The report provides a preliminary assessment of the charge storage prerogatives of an asymmetric electrochemical capacitor employing a carbon-grafted NiO electrode interfaced with 1-ethyl-3-methyl imidazoliumdicyanamide as an ionic liquid electrolyte. This configuration has been demonstrated to be potentially exploited for developing hybrid supercapacitors providing as high energy density as 21 W h Kg(-1).


Assuntos
Amidas/química , Carbono/química , Técnicas Eletroquímicas , Imidazóis/química , Líquidos Iônicos/química , Nanofios/química , Níquel/química , Nitrilas/química , Capacitância Elétrica , Eletrodos , Eletrólitos/química
8.
ACS Appl Mater Interfaces ; 7(7): 4283-9, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25647808

RESUMO

A spectroscopic investigation focusing on the charge generation and transport in inverted p-type perovskite-based mesoscopic (Ms) solar cells is provided in this report. Nanocrystalline nickel oxide and PCBM are employed respectively as hole transporting scaffold and hole blocking layer to sandwich a perovskite light harvester. An efficient hole transfer process from perovskite to nickel oxide is assessed, through time-resolved photoluminescence and photoinduced absorption analyses, for both the employed absorbing species, namely MAPbI3-xClx and MAPbI3. A striking relevant difference between p-type and n-type perovskite-based solar cells emerges from the study.

9.
ChemSusChem ; 7(9): 2659-69, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25056642

RESUMO

This study deals with the synthesis and characterization of two π-extended organic sensitizers (G1 and G2) for applications in dye-sensitized solar cells. The materials are designed with a D-A-π-A structure constituted by i) a triarylamine group as the donor part, ii) a dithienyl-benzothiadiazole chromophore followed by iii) a further ethynylene-thiophene (G1) or ethynylene-benzene (G2) π-spacer and iv) a cyano-acrylic moiety as acceptor and anchoring part. An unusual structural extension of the π-bridge characterizes these structures. The so-configured sensitizers exhibit a broad absorption profile, the origin of which is supported by density functional theory. The absence of hypsochromic shifts as a consequence of deprotonation as well as notable optical and electrochemical stabilities are also observed. Concerning the performances in devices, electrochemical impedance spectroscopy indicates that the structural modification of the π-spacer mainly increases the electron lifetime of G2 with respect to G1. In devices, this feature translates into a superior power conversion efficiency of G2, reaching 8.1%. These results are comparable to those recorded for N719 and are higher with respect to literature congeners, supporting further structural engineering of the π-bridge extension in the search for better performing π-extended organic sensitizers.


Assuntos
Corantes/química , Fontes de Energia Elétrica , Engenharia , Energia Solar , Tiadiazóis/química , Eletroquímica , Transporte de Elétrons , Modelos Moleculares , Conformação Molecular
10.
ACS Appl Mater Interfaces ; 6(4): 2471-8, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24503380

RESUMO

We carry out an accurate computational analysis on the nature and distribution of electronic trap states in shape-tailored anatase TiO2 structures, investigating the effect of the morphology on the electronic structure. Linear nanocrystal models up to 6 nm in length with various morphologies, reproducing both flattened and elongated rod-shaped TiO2 nanocrystals, have been investigated by DFT calculations, to clarify the effect of the crystal facet percentage on the nanocrystal electronic structure, with particular reference to the energetics and distribution of trap states. The calculated densities of states below the conduction band edge have been very well fitted assuming an exponential distribution of energies and have been correlated with experimental capacitance data. In good agreement with the experimental phenomenology our calculations show that elongated rod-shaped nanocrystals with higher values of the ratio between (100) and (101) facets exhibit a relatively deeper distribution of trap states. Our results point at the crucial role of the nanocrystal morphology on the trap state density, highlighting the importance of a balance between the low-energy (101) and high-energy (100)/(001) surface facets in individual TiO2 nanocrystals.

11.
ACS Appl Mater Interfaces ; 6(3): 1933-43, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24401009

RESUMO

The peculiar architecture of a novel class of anisotropic TiO2(B) nanocrystals, which were synthesized by an surfactant-assisted nonaqueous sol-gel route, was profitably exploited to fabricate highly efficient mesoporous electrodes for Li storage. These electrodes are composed of a continuous spongy network of interconnected nanoscale units with a rod-shaped profile that terminates into one or two bulgelike or branch-shaped apexes spanning areas of about 5 × 10 nm(2). This architecture transcribes into a superior cycling performance (a charge capacitance of 222 mAh g(-1) was achieved by a carbon-free TiO2(B)-nanorods-based electrode vs 110 mAh g(-1) exhibited by a comparable TiO2-anatase electrode) and good chemical stability (more than 90% of the initial capacity remains after 100 charging/discharging cycles). Their outstanding lithiation/delithiation capabilities were also exploited to fabricate electrochromic devices that revealed an excellent coloration efficiency (130 cm(2) C(-1) at 800 nm) upon the application of 1.5 V as well as an extremely fast electrochromic switching (coloration time ∼5 s).

12.
ACS Appl Mater Interfaces ; 6(4): 2415-22, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24460118

RESUMO

A photovoltachromic window can potentially act as a smart glass skin which generates electric energy as a common dye-sensitized solar cell and, at the same time, control the incoming energy flux by reacting to even small modifications in the solar radiation intensity. We report here the successful implementation of a novel architecture of a photovoltachromic cell based on an engineered bifunctional counter electrode consisting of two physically separated platinum and tungsten oxide regions, which are arranged to form complementary comb-like patterns. Solar light is partially harvested by a dye-sensitized photoelectrode made on the front glass of the cell which fully overlaps a bifunctional counter electrode made on the back glass. When the cell is illuminated, the photovoltage drives electrons into the electrochromic stripes through the photoelectrochromic circuit and promotes the Li(+) diffusion towards the WO3 film, which thus turns into its colored state: a photocoloration efficiency of 17 cm(2) min(-1) W(-1) at a wavelength of 650 nm under 1.0 sun was reported along with fast response (coloration time <2 s and bleaching time <5 s). A fairly efficient photovoltaic functionality was also retained due to the copresence of the independently switchable micropatterned platinum electrode.

13.
Phys Chem Chem Phys ; 15(39): 16949-55, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24002434

RESUMO

An engineered bi-layered photoelectrode for dye solar cells has been developed which profitably employs two synergistic meso-ordered components, namely a thin meso-ordered TiO2 film and a main microparticles-based photoelectrode. The former has been deposited as an interfacial layer at the FTO-coated substrate and suppresses the back-transport reaction by blocking direct contact between the electrolyte and conductive oxide. The latter is made of hierarchical micro- and nano-structured building blocks prepared by template synthesis, which permits efficient light scattering without sacrificing the internal surface area. The optimization of light harvesting and charge recombination dynamics allowed us to achieve as high energy conversion efficiency as 9.7%.


Assuntos
Energia Solar , Titânio/química , Microscopia Eletrônica de Varredura , Nanopartículas/química , Porosidade , Difração de Raios X
14.
ACS Appl Mater Interfaces ; 5(15): 7139-45, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23815624

RESUMO

We present the fabrication of a multifunctional, hybrid organic-inorganic micropatterned device, which is capable to act as a stable photosensor and, at the same time, displaying inherent superhydrophobic self-cleaning wetting characteristics. In this framework several arrays of epoxy photoresist square micropillars have been fabricated on n-doped crystalline silicon substrates and subsequently coated with a poly(3-hexylthiophene-2,5-diyl) (P3HT) layer, giving rise to an array of organic/inorganic p-n junctions. Their photoconductivity has been measured under a solar light simulator at different illumination intensities. The current-voltage (I-V) curves show high rectifying characteristics, which are found to be directly correlated with the illumination intensity. The photoresponse occurs in extremely short times (within few tens of milliseconds range). The influence of the interpillar distance on the I-V characteristics of the sensors is also discussed. Moreover, the static and dynamic wetting properties of these organic/inorganic photosensors can be easily tuned by changing the pattern geometry. Measured static water contact angles range from 125° to 164°, as the distance between the pillars is increased from 14 to 120 µm while the contact angle hysteresis decreases from 36° down to 2°.

15.
Chem Commun (Camb) ; 48(25): 3109-11, 2012 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-22344250

RESUMO

Four different species of ionically conductive polymers were synthesized and successfully implemented to formulate novel quasi-solid electrolytes for dye solar cells. A power conversion efficiency superior to 85% of the correspondent liquid electrolyte as well as an excellent cell's stability was demonstrated after 500 days of storage.


Assuntos
Eletrólitos/química , Géis/química , Ácidos Polimetacrílicos/química , Energia Solar , Corantes
16.
J Am Chem Soc ; 133(47): 19216-39, 2011 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-22004553

RESUMO

A colloidal crystal-splitting growth regime has been accessed, in which TiO(2) nanocrystals, selectively trapped in the metastable anatase phase, can evolve to anisotropic shapes with tunable hyperbranched topologies over a broad size interval. The synthetic strategy relies on a nonaqueous sol-gel route involving programmed activation of aminolysis and pyrolysis of titanium carboxylate complexes in hot surfactant media via a simple multi-injection reactant delivery technique. Detailed investigations indicate that the branched objects initially formed upon the aminolysis reaction possess a strained monocrystalline skeleton, while their corresponding larger derivatives grown in the subsequent pyrolysis stage accommodate additional arms crystallographically decoupled from the lattice underneath. The complex evolution of the nanoarchitectures is rationalized within the frame of complementary mechanistic arguments. Thermodynamic pathways, determined by the shape-directing effect of the anatase structure and free-energy changes accompanying branching and anisotropic development, are considered to interplay with kinetic processes, related to diffusion-limited, spatially inhomogeneous monomer fluxes, lattice symmetry breaking at transient Ti(5)O(5) domains, and surfactant-induced stabilization. Finally, as a proof of functionality, the fabrication of dye-sensitized solar cells based on thin-film photoelectrodes that incorporate networked branched nanocrystals with intact crystal structure and geometric features is demonstrated. An energy conversion efficiency of 6.2% has been achieved with standard device configuration, which significantly overcomes the best performance ever approached with previously documented prototypes of split TiO(2) nanostructures. Analysis of the relevant photovoltaic parameters reveals that the utilized branched building blocks indeed offer light-harvesting and charge-collecting properties that can overwhelm detrimental electron losses due to recombination and trapping events.


Assuntos
Corantes/química , Nanopartículas/química , Energia Solar , Titânio/química , Tamanho da Partícula , Propriedades de Superfície
17.
ACS Appl Mater Interfaces ; 3(9): 3625-32, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21870845

RESUMO

We demonstrate a general approach to fabricate a novel low-cost, lightweight and flexible nanocomposite foil that can be effectively implemented as a monolithic counter-electrode in dye solar cells. The pivotal aim of this work was to replace not only the platinum catalyzer film, but even the underlying transparent conductive oxide-coated substrate, by means of a monolithic counter electrode based on carbonaceous materials. According to our approach, a proper dispersion of multiwalled carbon nanotubes (MWCNTs) has been added to a dilute polypropylene solution in toluene. The composite solution has been then adequately mixed and subsequently dried by means of a controlled solvent evaporation process; the resulting powder has been modeled by compression molding into thin plates. Four different series of plates have been realized by tuning the carbon nanotubes concentration from 5 wt % to 20 wt %. Finally, a specifically setup reactive ion etching treatment with oxygen plasma has been carried out onto the plate surface to remove the residual polymeric capping layer and allow the embedded CNTs to protrude on top of the surface. A fine-tuning of the morphological features has been made possible by adjusting the plasma etching conditions. For all the treated surfaces, the most meaningful electrochemical parameters have been quantitatively analyzed by means of both electrochemical impedance spectroscopy and cyclic voltammetry measurements. An as high as 13.8 mA/cm(2) photocurrent density, along with a solar conversion efficiency of 6.67%, has been measured for a dye solar cell mounting a counter-electrode based on a 20 wt % CNT nanocomposite.


Assuntos
Corantes/química , Nanotubos de Carbono/química , Energia Solar , Catálise , Espectroscopia Dielétrica , Técnicas Eletroquímicas , Eletrodos , Platina/química
18.
J Colloid Interface Sci ; 363(2): 668-75, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21855889

RESUMO

Extremely lightweight plates made of an engineered PMMA-based composite material loaded with hollow glass micro-sized spheres, nano-sized silica particles and aluminum hydroxide prismatic micro-flakes were realized by cast molding. Their interesting bulk mechanical properties were combined to properly tailored surface topography compatible with the achievement of a superhydrophobic behavior after the deposition of a specifically designed hydrophobic coating. With this aim, we synthesized two different species of fluoromethacrylic polymers functionalized with methoxysilane anchoring groups to be covalently grafted onto the surface protruding inorganic fillers. By modulating the feed composition of the reacting monomers, it was possible to combine the hydrophobic character of the polymer with an high adhesion strength to the substrate and hence to maximize both the water contact angle (up to 157°) and the durability of the easy-to-clean effect (up to 2000 h long outdoor exposure).


Assuntos
Polimetil Metacrilato/química , Hidróxido de Alumínio/química , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Peso Molecular , Nanoestruturas/química , Tamanho da Partícula , Dióxido de Silício/química , Propriedades de Superfície
19.
Langmuir ; 25(11): 6357-62, 2009 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-19466786

RESUMO

We present a robust and cost-effective coating method to fabricate long-term durable superhydrophobic andsimultaneouslyantireflective surfaces by a double-layer coating comprising trimethylsiloxane (TMS) surface-functionalized silica nanoparticles partially embedded into an organosilica binder matrix produced through a sol-gel process. A dense and homogeneous organosilica gel layer was first coated onto a glass substrate, and then, a trimethylsilanized nanospheres-based superhydrophobic layer was deposited onto it. After thermal curing, the two layers turned into a monolithic film, and the hydrophobic nanoparticles were permanently fixed to the glass substrate. Such treated surfaces showed a tremendous water repellency (contact angle = 168 degrees ) and stable self-cleaning effect during 2000 h of outdoor exposure. Besides this, nanotextured topology generated by the self-assembled nanoparticles-based top layer produced a fair antireflection effect consisting of more than a 3% increase in optical transmittance.

20.
Langmuir ; 24(5): 1833-43, 2008 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-18193908

RESUMO

Superhydrophobic surfaces are gaining considerable interest in a lot of different applications, and nonetheless, precise control over the wettability properties of such surfaces is still a challenge due to difficulties when controlling the effects independently induced on superhydrophobicity by the chemical and topological surface characteristics. We have fabricated engineered superhydrophobic surfaces onto poly(dimethylsiloxane) (PDMS) substrates by means of suitable CF4-plasma treatments. These treatments allowed the modification of both the morphological properties of the PDMS surface, due to a preferential etching of certain components of its macromolecules, and the chemical ones, by the deposition of a fluorinated layer. Chemical effects were separated from topological ones by performing a double replica molding process of the CF4-plasma-treated surfaces. This allowed us to obtain positive copies of the structured surfaces without the overlaying fluorinated coating affecting the surface chemistry. Such replicated surfaces showed a decrease of the contact angle if compared to the treated ones and therefore evidenced chemistry's weight in superhydrophobicity effects. In particular, we found that, for highly dense columnar-like PDMS microstructures, the effect of the plasma-deposited fluorinated layer covering surfaces produces an enhancement of the contact angle of about 20 degrees .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...