Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neuroendocrinol ; 34(12): e13218, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36471907

RESUMO

Acyl-CoA binding protein (ACBP), also known as diazepam binding inhibitor (DBI), has recently emerged as a hypothalamic and brainstem gliopeptide regulating energy balance. Previous work has shown that the ACBP-derived octadecaneuropeptide exerts strong anorectic action via proopiomelanocortin (POMC) neuron activation and the melanocortin-4 receptor. Importantly, targeted ACBP loss-of-function in astrocytes promotes hyperphagia and diet-induced obesity while its overexpression in arcuate astrocytes reduces feeding and body weight. Despite this knowledge, the role of astroglial ACBP in adaptive feeding and metabolic responses to acute metabolic challenges has not been investigated. Using different paradigms, we found that ACBP deletion in glial fibrillary acidic protein (GFAP)-positive astrocytes does not affect weight loss when obese male mice are transitioned from a high fat diet to a chow diet, nor metabolic parameters in mice fed with a normal chow diet (e.g., energy expenditure, body temperature) during fasting, cold exposure and at thermoneutrality. In contrast, astroglial ACBP deletion impairs meal pattern and feeding responses during refeeding after a fast and during cold exposure, thereby showing that ACBP is required to stimulate feeding in states of increased energy demand. These findings challenge the general view that astroglial ACBP exerts anorectic effects and suggest that regulation of feeding by ACBP is dependent on metabolic status.


Assuntos
Depressores do Apetite , Inibidor da Ligação a Diazepam , Metabolismo Energético , Animais , Masculino , Camundongos , Astrócitos/metabolismo , Inibidor da Ligação a Diazepam/metabolismo , Metabolismo Energético/fisiologia , Hiperfagia/metabolismo
2.
Diabetologia ; 63(4): 673-682, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32030470

RESUMO

The appropriate utilisation, storage and conversion of nutrients in peripheral tissues, referred to as nutrient partitioning, is a fundamental process to adapt to nutritional and metabolic challenges and is thus critical for the maintenance of a healthy energy balance. Alterations in this process during nutrient excess can have deleterious effects on glucose and lipid homeostasis and contribute to the development of obesity and type 2 diabetes. Nutrient partitioning is a complex integrated process under the control of hormonal and neural signals. Neural control relies on the capacity of the brain to sense circulating metabolic signals and mount adaptive neuroendocrine and autonomic responses. This review aims to discuss the hypothalamic neurocircuits and molecular mechanisms controlling nutrient partitioning and their potential contribution to metabolic maladaptation and disease.


Assuntos
Metabolismo Energético/fisiologia , Neurônios/fisiologia , Nutrientes/metabolismo , Animais , Metabolismo dos Carboidratos/fisiologia , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Glucose/metabolismo , Homeostase/fisiologia , Humanos , Hipotálamo/fisiologia , Metabolismo dos Lipídeos/fisiologia , Rede Nervosa/fisiologia , Nutrientes/química , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA