Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38976488

RESUMO

Purpose: Fingolimod (FTY720; FT), a structural analog of sphingosine, has potential ocular applications. The goal of this study was to develop an FT-loaded nanoemulsion (NE; FT-NE) formulation for the efficient and prolonged delivery of FT to the posterior segment of the eye through the topical route. Methods: FT-NE formulations were prepared using homogenization followed by the probe sonication method. The lead FT-NE formulations (0.15% and 0.3% w/v loading), comprising soybean oil as oil and Tween® 80 and Poloxamer 188 as surfactants, were further evaluated for in vitro release, surface morphology, filtration sterilization, and stability at refrigerated temperature. Ocular bioavailability following topical application of FT-NE (0.3%) was examined in Sprague-Dawley rats. Results: The formulation, at both dose levels, showed desirable physicochemical characteristics, a nearly spherical shape with homogenous nanometric size distribution, and was stable for 180 days (last time point checked) at refrigerated temperature postfiltration through a polyethersulfone (0.22 µm) membrane. In vitro release studies showed prolonged release over 24 h, compared with the control FT solution (FT-S). In vivo studies revealed that effective concentrations of FT were achieved in the vitreous humor and retina following topical application of FT-NE. Conclusions: The results from these studies demonstrate that the FT-NE formulation can serve as a viable platform for the ocular delivery of FT through the topical route.

2.
Lipids Health Dis ; 23(1): 200, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937745

RESUMO

BACKGROUND: Traumatic brain injury (TBI) causes neuroinflammation and can lead to long-term neurological dysfunction, even in cases of mild TBI (mTBI). Despite the substantial burden of this disease, the management of TBI is precluded by an incomplete understanding of its cellular mechanisms. Sphingolipids (SPL) and their metabolites have emerged as key orchestrators of biological processes related to tissue injury, neuroinflammation, and inflammation resolution. No study so far has investigated comprehensive sphingolipid profile changes immediately following TBI in animal models or human cases. In this study, sphingolipid metabolite composition was examined during the acute phases in brain tissue and plasma of mice following mTBI. METHODS: Wildtype mice were exposed to air-blast-mediated mTBI, with blast exposure set at 50-psi on the left cranium and 0-psi designated as Sham. Sphingolipid profile was analyzed in brain tissue and plasma during the acute phases of 1, 3, and 7 days post-TBI via liquid-chromatography-mass spectrometry. Simultaneously, gene expression of sphingolipid metabolic markers within brain tissue was analyzed using quantitative reverse transcription-polymerase chain reaction. Significance (P-values) was determined by non-parametric t-test (Mann-Whitney test) and by Tukey's correction for multiple comparisons. RESULTS: In post-TBI brain tissue, there was a significant elevation of 1) acid sphingomyelinase (aSMase) at 1- and 3-days, 2) neutral sphingomyelinase (nSMase) at 7-days, 3) ceramide-1-phosphate levels at 1 day, and 4) monohexosylceramide (MHC) and sphingosine at 7-days. Among individual species, the study found an increase in C18:0 and a decrease in C24:1 ceramides (Cer) at 1 day; an increase in C20:0 MHC at 3 days; decrease in MHC C18:0 and increase in MHC C24:1, sphingomyelins (SM) C18:0, and C24:0 at 7 days. Moreover, many sphingolipid metabolic genes were elevated at 1 day, followed by a reduction at 3 days and an absence at 7-days post-TBI. In post-TBI plasma, there was 1) a significant reduction in Cer and MHC C22:0, and an increase in MHC C16:0 at 1 day; 2) a very significant increase in long-chain Cer C24:1 accompanied by significant decreases in Cer C24:0 and C22:0 in MHC and SM at 3 days; and 3) a significant increase of C22:0 in all classes of SPL (Cer, MHC and SM) as well as a decrease in Cer C24:1, MHC C24:1 and MHC C24:0 at 7 days. CONCLUSIONS: Alterations in sphingolipid metabolite composition, particularly sphingomyelinases and short-chain ceramides, may contribute to the induction and regulation of neuroinflammatory events in the early stages of TBI, suggesting potential targets for novel diagnostic, prognostic, and therapeutic strategies in the future.


Assuntos
Encéfalo , Ceramidas , Esfingolipídeos , Esfingomielina Fosfodiesterase , Esfingosina , Animais , Camundongos , Esfingolipídeos/sangue , Esfingolipídeos/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Ceramidas/sangue , Ceramidas/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielina Fosfodiesterase/sangue , Esfingomielina Fosfodiesterase/genética , Esfingosina/análogos & derivados , Esfingosina/sangue , Esfingosina/metabolismo , Modelos Animais de Doenças , Masculino , Esfingomielinas/sangue , Esfingomielinas/metabolismo , Concussão Encefálica/sangue , Concussão Encefálica/metabolismo , Camundongos Endogâmicos C57BL , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/sangue , Lesões Encefálicas Traumáticas/patologia , Lisofosfolipídeos/sangue , Lisofosfolipídeos/metabolismo
3.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928268

RESUMO

Human corneal fibrosis can lead to opacity and ultimately partial or complete vision loss. Currently, corneal transplantation is the only treatment for severe corneal fibrosis and comes with the risk of rejection and donor shortages. Sphingolipids (SPLs) are known to modulate fibrosis in various tissues and organs, including the cornea. We previously reported that SPLs are tightly related to both, transforming growth factor beta (TGF-ß) signaling and corneal fibrogenesis. The aim of this study was to investigate the effects of sphingosine-1-phosphate (S1P) and S1P inhibition on specific TGF-ß and SPL family members in corneal fibrosis. Healthy human corneal fibroblasts (HCFs) were isolated and cultured in EMEM + FBS + VitC (construct medium) on 3D transwells for 4 weeks. The following treatments were prepared in a construct medium: 0.1 ng/mL TGF-ß1 (ß1), 1 µM sphingosine-1-phosphate (S1P), and 5 µM Sphingosine kinase inhibitor 2 (I2). Five groups were tested: (1) control (no treatment); rescue groups; (2) ß1/S1P; (3) ß1/I2; prevention groups; (4) S1P/ß1; and (5) I2/ß1. Each treatment was administered for 2 weeks with one treatment and switched to another for 2 weeks. Using Western blot analysis, the 3D constructs were examined for the expression of fibrotic markers, SPL, and TGF-ß signaling pathway members. Scratch assays from 2D cultures were also utilized to evaluate cell migration We observed reduced fibrotic expression and inactivation of latent TGF-ß binding proteins (LTBPs), TGF-ß receptors, Suppressor of Mothers Against Decapentaplegic homologs (SMADs), and SPL signaling following treatment with I2 prevention and rescue compared to S1P prevention and rescue, respectively. Furthermore, we observed increased cell migration following stimulation with I2 prevention and rescue groups, with decreased cell migration following stimulation with S1P prevention and rescue groups after 12 h and 18 h post-scratch. We have demonstrated that I2 treatment reduced fibrosis and modulated the inactivation of LTBPs, TGF-ß receptors, SPLs, and the canonical downstream SMAD pathway. Further investigations are warranted in order to fully uncover the potential of utilizing SphK I2 as a novel therapy for corneal fibrosis.


Assuntos
Córnea , Fibrose , Lisofosfolipídeos , Transdução de Sinais , Esfingosina , Fator de Crescimento Transformador beta , Humanos , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Esfingosina/farmacologia , Lisofosfolipídeos/metabolismo , Lisofosfolipídeos/farmacologia , Córnea/metabolismo , Córnea/patologia , Córnea/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Células Cultivadas , Esfingolipídeos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Doenças da Córnea/metabolismo , Doenças da Córnea/patologia , Doenças da Córnea/tratamento farmacológico
4.
Cornea ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563551

RESUMO

PURPOSE: The purpose of this study was to examine ocular surface symptoms, tear metrics, and tear cytokines by Meibomian gland dysfunction (MGD) features. METHODS: Symptom questionnaires and an ocular surface evaluation were performed on 40 individuals with varied MGD signs [Meibomian gland (MG) plugging, eyelid vascularity, meibum quality, and MG dropout]. Tear proteins were extracted off Schirmer strips and analyzed for 23 human inflammation-related proteins. Statistical analysis was performed to examine associations between dry eye metrics inflammatory proteins and MGD features. RESULTS: The study involved 40 South Florida veterans with a mean age of 61 ± 13 years; most individuals were male (95%), White (31%), and non-Hispanic (85%). MGD features differentially related to dry eye signs. Eyelid vascularity, meibum quality, and MG dropout, but not MG plugging, correlated with higher corneal staining and lower tear production. MGD features also differentially related to tear cytokines. Eyelid vascularity most closely related to inflammation with significant correlations for interferon-gamma-γ (r = 0.36, P = 0.02), interleukin-4 (IL-4) (r = 0.43, P = 0.006), IL-17A (r = 0.42, P = 0.007), matrix metalloproteinase-2 (r = 0.39, P = 0.01), C-X-C motif chemokine ligand 5 (Regulated upon Activation, Normal T-Cell Expressed and presumably Secreted [RANTES]) (r = 0.32, P = 0.04), and tumor necrosis factor α (r = 0.36, P = 0.02). The other 3 MGD signs were less related to inflammation. Multivariable models revealed IL-4 to be most closely related to eyelid vascularity (standardized ß = 0.39, P < 0.0001). CONCLUSIONS: Eyelid vascularity was the MGD sign most closely related to inflammatory cytokines, suggesting that different MGD features may be driven by different pathophysiological mechanisms.

5.
Biomolecules ; 14(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38540794

RESUMO

Polyunsaturated fatty acids (PUFAs) generate pro- and anti-inflammatory eicosanoids via three different metabolic pathways. This study profiled tear PUFAs and their metabolites and examined the relationships with dry eye (DE) and meibomian gland dysfunction (MGD) symptoms and signs. A total of 40 individuals with normal eyelids and corneal anatomies were prospectively recruited. The symptoms and signs of DE and MGD were assessed, and tear samples (from the right eye) were analyzed by mass spectrometry. Mann-Whitney U tests assessed differences between medians; Spearman tests assessed correlations between continuous variables; and linear regression models assessed the impact of potential confounders. The median age was 63 years; 95% were male; 30% were White; and 85% were non-Hispanic. The symptoms of DE/MGD were not correlated with tear PUFAs and eicosanoids. DE signs (i.e., tear break-up time (TBUT) and Schirmer's) negatively correlated with anti-inflammatory eicosanoids (11,12-dihydroxyeicosatrienoic acid (11,12 DHET) and 14,15-dihydroxyicosatrienoic acid (14,15, DHET)). Corneal staining positively correlated with the anti-inflammatory PUFA, docosahexaenoic acid (DHA). MGD signs significantly associated with the pro-inflammatory eicosanoid 15-hydroxyeicosatetranoic acid (15-HETE) and DHA. Several relationships remained significant when potential confounders were considered. DE/MGD signs relate more to tear PUFAs and eicosanoids than symptoms. Understanding the impact of PUFA-related metabolic pathways in DE/MGD may provide targets for new therapeutic interventions.


Assuntos
Síndromes do Olho Seco , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Síndromes do Olho Seco/tratamento farmacológico , Eicosanoides/metabolismo , Lágrimas/metabolismo , Córnea/metabolismo , Ácidos Docosa-Hexaenoicos , Anti-Inflamatórios/uso terapêutico
6.
Artigo em Inglês | MEDLINE | ID: mdl-38501230

RESUMO

CONTEXT: Sphingolipids are linked to the pathogenesis of type 2 diabetes (T2D). OBJECTIVE: To test the hypothesis that plasma sphingolipid profiles predict incident prediabetes. DESIGN: A case-control study nested in the Pathobiology of Prediabetes in a Biracial Cohort (POP-ABC) study, a 5-year follow-up study. SETTING: Academic health center. PARTICIPANTS: Normoglycemic adults enrolled in the POP-ABC study. Assessments included OGTT, insulin sensitivity and insulin secretion. Participants with incident prediabetes were matched in age, sex, and ethnicity with non-progressors. INTERVENTIONS: We assayed 58 sphingolipid species (ceramides, monohexosyl ceramides, sphingomyelins, and sphingosine) using LC/tandem mass spectrometry in baseline plasma levels from participants and determined association with prediabetes risk. MAIN OUTCOME MEASURE: The primary outcome was progression from normoglycemia to prediabetes, defined as impaired fasting glucose or impaired glucose tolerance. RESULTS: The mean age of participants (N = 140; 50% Black, 50% female) was 48.1 ± 8.69 y, BMI 30.1 ± 5.78 kg/m2, fasting plasma glucose (FPG) 92.7 ± 5.84 mg/dl, and two-hour plasma glucose (2hrPG) 121 ± 23.3 mg/dl. Of the 58 sphingolipid species assayed, higher ratios of sphingomyelin C26:0/C26:1 (OR 2.73 [95% CI 1.172-4.408], P = 0.015) and ceramide C18:0/C18:1 (OR 1.236 [95% CI 1.042-1.466], P = 0.015) in baseline plasma specimens were significantly associated with progression to prediabetes during the 5-year follow-up period, after adjustments for age, race, sex, BMI, FPG, 2hPG, insulin sensitivity, and insulin secretion. CONCLUSIONS: We conclude that the saturated-to-monounsaturated ratios of long-chain ceramide C18:0/C18:1 and very-long-chain sphingomyelin C26:0/C26:1 are potential biomarkers of prediabetes risk among individuals with parental history of T2D.

7.
Exp Eye Res ; 242: 109852, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460719

RESUMO

Oxidative stress plays a pivotal role in the pathogenesis of several neurodegenerative diseases. Retinal degeneration causes irreversible death of photoreceptor cells, ultimately leading to vision loss. Under oxidative stress, the synthesis of bioactive sphingolipid ceramide increases, triggering apoptosis in photoreceptor cells and leading to their death. This study investigates the effect of L-Cycloserine, a small molecule inhibitor of ceramide biosynthesis, on sphingolipid metabolism and the protection of photoreceptor-derived 661W cells from oxidative stress. The results demonstrate that treatment with L-Cycloserine, an inhibitor of Serine palmitoyl transferase (SPT), markedly decreases bioactive ceramide and associated sphingolipids in 661W cells. A nontoxic dose of L-Cycloserine can provide substantial protection of 661W cells against H2O2-induced oxidative stress by reversing the increase in ceramide level observed under oxidative stress conditions. Analysis of various antioxidant, apoptotic and sphingolipid pathway genes and proteins also confirms the ability of L-Cycloserine to modulate these pathways. Our findings elucidate the generation of sphingolipid mediators of cell death in retinal cells under oxidative stress and the potential of L-Cycloserine as a therapeutic candidate for targeting ceramide-induced degenerative diseases by inhibiting SPT. The promising therapeutic prospect identified in our findings lays the groundwork for further validation in in-vivo and preclinical models of retinal degeneration.


Assuntos
Apoptose , Ceramidas , Ciclosserina , Estresse Oxidativo , Esfingolipídeos , Estresse Oxidativo/efeitos dos fármacos , Ciclosserina/farmacologia , Animais , Ceramidas/metabolismo , Ceramidas/farmacologia , Camundongos , Esfingolipídeos/metabolismo , Apoptose/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Serina C-Palmitoiltransferase/metabolismo , Serina C-Palmitoiltransferase/antagonistas & inibidores , Peróxido de Hidrogênio/toxicidade , Peróxido de Hidrogênio/farmacologia , Linhagem Celular , Degeneração Retiniana/metabolismo , Degeneração Retiniana/prevenção & controle , Degeneração Retiniana/patologia , Degeneração Retiniana/tratamento farmacológico , Western Blotting , Inibidores Enzimáticos/farmacologia , Sobrevivência Celular/efeitos dos fármacos
8.
Int J Mol Sci ; 25(2)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38255815

RESUMO

Vesicating chemicals like sulfur mustard (SM) or nitrogen mustard (NM) can cause devastating damage to the eyes, skin, and lungs. Eyes, being the most sensitive, have complicated pathologies that can manifest immediately after exposure (acute) and last for years (chronic). No FDA-approved drug is available to be used as medical counter measures (MCMs) against such injuries. Understanding the pathological mechanisms in acute and chronic response of the eye is essential for developing effective MCMs. Here, we report the clinical and histopathological characterization of a mouse model of NM-induced ocular surface injury (entire surface) developed by treating the eye with 2% (w/v) NM solution for 5 min. Unlike the existing models of specific injury, our model showed severe ocular inflammation, including the eyelids, structural deformity of the corneal epithelium and stroma, and diminished visual and retinal functions. We also observed alterations of the inflammatory markers and their expression at different phases of the injury, along with an activation of acidic sphingomyelinase (aSMase), causing an increase in bioactive sphingolipid ceramide and a reduction in sphingomyelin levels. This novel ocular surface mouse model recapitulated the injuries reported in human, rabbit, and murine SM or NM injury models. NM exposure of the entire ocular surface in mice, which is similar to accidental or deliberate exposure in humans, showed severe ocular inflammation and caused irreversible alterations to the corneal structure and significant vision loss. It also showed an intricate interplay between inflammatory markers over the injury period and alteration in sphingolipid homeostasis in the early acute phase.


Assuntos
Traumatismos Oculares , Gás de Mostarda , Humanos , Animais , Camundongos , Coelhos , Mecloretamina/toxicidade , Traumatismos Oculares/induzido quimicamente , Pálpebras , Modelos Animais de Doenças , Gás de Mostarda/toxicidade , Esfingolipídeos , Inflamação
9.
J Clin Endocrinol Metab ; 109(3): 740-749, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-37804534

RESUMO

CONTEXT: Ceramides and sphingolipids have been linked to type 2 diabetes (T2D). The Ceramides and Sphingolipids as Predictors of Incident Dysglycemia (CASPID) study is designed to determine the association of plasma sphingolipids with the pathophysiology of human T2D. OBJECTIVE: A comparison of plasma sphingolipids profiles in Black and White adults with (FH+) and without (FH-) family history of T2D. DESIGN: We recruited 100 Black and White FH- (54 Black, 46 White) and 140 FH+ (75 Black, 65 White) adults. Fasting plasma levels of 58 sphingolipid species, including 18 each from 3 major classes (ceramides, monohexosylceramides, and sphingomyelins, all with 18:1 sphingoid base) and 4 long-chain sphingoid base-containing species, were measured by liquid chromatography/mass spectrometry. RESULTS: Sphingomyelin was the most abundant sphingolipid in plasma (89% in FH-), and was significantly elevated in FH+ subjects (93%). Ceramides and monohexosylceramides comprised 5% and 6% of total sphingolipids in the plasma of FH- subjects, and were reduced significantly in FH+ subjects (3% and 4%, respectively). In FH+ subjects, most ceramide and monohexosylceramide species were decreased but sphingomyelin species were increased. The level of C18:1 species of all 3 classes was elevated in FH+ subjects. CONCLUSION: Elevated levels of sphingomyelin, the major sphingolipids of plasma, and oleic acid-containing sphingolipids in healthy FH+ subjects compared with healthy FH- subjects may reflect heritable elements linking sphingolipids and the development of T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Esfingolipídeos , Adulto , Humanos , Ceramidas , Diabetes Mellitus Tipo 2/genética , Esfingomielinas , População Branca , População Negra
10.
Clin Exp Ophthalmol ; 52(5): 516-527, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38146655

RESUMO

BACKGROUND: There is a need to develop biomarkers for diagnosis and prediction of treatment responses in depression and post-traumatic stress disorder (PTSD). METHODS: Cross-sectional study examining correlations between tear inflammatory proteins, meibum and tear sphingolipids, and symptoms of depression and PTSD-associated anxiety. Ninety individuals filled depression (Patient Health Questionnaire 9, PHQ-9) and PTSD-associated anxiety (PTSD Checklist-Military Version, PCL-M) questionnaires. In 40 patients, a multiplex assay system was used to quantify 23 inflammatory proteins in tears. In a separate group of 50 individuals, liquid chromatography-mass spectrometry was performed on meibum and tears to quantify 34 species of sphingolipids, encompassing ceramides, monohexosyl ceramides and sphingomyelins. RESULTS: The mean age of the population was 59.4 ± 11.0 years; 89.0% self-identified as male, 34.4% as White, 64.4% as Black, and 16.7% as Hispanic. The mean PHQ-9 score was 11.1 ± 7.6, and the mean PCL-M score was 44.3 ± 19.1. Symptoms of depression and PTSD-associated anxiety were highly correlated (ρ =0.75, p < 0.001). Both PHQ9 and PCL-M scores negatively correlated with multiple sphingolipid species in meibum and tears. In multivariable models, meibum Monohexosyl Ceramide 26:0 (pmol), tear Ceramide 16:0 (mol%), meibum Monohexosyl Ceramide 16:0 (mol%), and tear Ceramide 26:1 (mol%) remained associated with depression and meibum Monohexosyl Ceramide 16:0 (mol%), meibum Monohexosyl Ceramide 26:0 (pmol), tear Sphingomyelin 20:0 (mol%), and tear Sphingosine-1-Phosphate (mol%) remained associated with PTSD-associated anxiety. CONCLUSIONS: Certain meibum and tear sphingolipid species were related to mental health indices. These interactions present opportunities for innovative diagnostic and therapeutic approaches for mental health disorders.


Assuntos
Biomarcadores , Glândulas Tarsais , Transtornos de Estresse Pós-Traumáticos , Lágrimas , Humanos , Masculino , Estudos Transversais , Feminino , Pessoa de Meia-Idade , Transtornos de Estresse Pós-Traumáticos/metabolismo , Transtornos de Estresse Pós-Traumáticos/diagnóstico , Lágrimas/química , Lágrimas/metabolismo , Biomarcadores/metabolismo , Glândulas Tarsais/metabolismo , Inquéritos e Questionários , Idoso , Cromatografia Líquida , Adulto , Esfingolipídeos/metabolismo , Lipídeos/análise , Depressão/metabolismo , Depressão/diagnóstico
11.
Biomolecules ; 13(12)2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-38136563

RESUMO

The bioactive sphingolipid sphingosine-1-phosphate (S1P) acts as a ligand for a family of G protein-coupled S1P receptors (S1PR1-5) to participate in a variety of signaling pathways. However, their specific roles in the neural retina remain unclear. We previously showed that S1P receptor subtype 2 (S1PR2) is expressed in murine retinas, primarily in photoreceptors and bipolar cells, and its expression is altered by retinal stress. This study aims to elucidate the role of S1PR2 in the mouse retina. We examined light responses by electroretinography (ERG), structural differences by optical coherence tomography (OCT), and protein levels by immunohistochemistry (IHC) in wild-type (WT) and S1PR2 knockout (KO) mice at various ages between 3 and 6 months. We found that a- and b-wave responses significantly increased at flash intensities between 400~2000 and 4~2000 cd.s/m2, respectively, in S1PR2 KO mice relative to those of WT controls at baseline. S1PR2 KO mice also exhibited significantly increased retinal nerve fiber layer (RNFL) and outer plexiform layer (OPL) thickness by OCT relative to the WT. Finally, in S1PR2 KO mice, we observed differential labeling of synaptic markers by immunohistochemistry (IHC) and quantitative reverse transcription polymerase chain reaction (RT-qPCR). These results suggest a specific involvement of S1PR2 in the structure and synaptic organization of the retina and a potential role in light-mediated functioning of the retina.


Assuntos
Eletrorretinografia , Retina , Camundongos , Animais , Receptores de Esfingosina-1-Fosfato/metabolismo , Retina/metabolismo , Transdução de Sinais , Camundongos Knockout
12.
bioRxiv ; 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37732206

RESUMO

The bioactive sphingolipid sphingosine-1-phosphate (S1P) acts as a ligand for a family of G protein-coupled S1P receptors (S1PR1-5) to participate in a variety of signaling pathways. However, their specific roles in the neural retina remain unclear. We previously showed that S1P receptor subtype 2 (S1PR2) is expressed in murine retinas, primarily in photoreceptors and bipolar cells, and its expression is altered by retinal stress. This study aims to elucidate the role of S1PR2 in the mouse retina. We examined light responses by electroretinography (ERG), structural differences by optical coherence tomography (OCT), and protein levels by immunohistochemistry (IHC) in wild-type (WT) and S1PR2 knockout (KO) mice at various ages between 3 and 6 months. We found that a- and b-wave responses significantly increased at flash intensities between 400∼2000 and 4∼2,000 cd.s/m 2 respectively, in S1PR2 KO mice relative to those of WT controls at baseline. S1PR2 KO mice also exhibited significantly increased retinal nerve fiber layer (RNFL) and outer plexiform layer (OPL) thickness by OCT relative to the WT. Finally, in S1PR2 KO mice, we observed differential labeling of synaptic markers by immunohistochemistry (IHC) and quantitative reverse transcription polymerase chain reaction (RT-qPCR). These results suggest a specific involvement of S1PR2 in the structure and synaptic organization of the retina and a potential role in light-mediated functioning of the retina.

13.
Exp Biol Med (Maywood) ; 248(16): 1393-1402, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37452717

RESUMO

The Ceramides and other Sphingolipids as Predictors of Incident Dysglycemia (CASPID) study tests the overall hypothesis that sphingolipids are pathophysiologic mediators of transition from normal glucose regulation (NGR) to prediabetes, type 2 diabetes (T2DM), and associated complications. The CASPID study utilizes two longitudinal cohorts - the Pathobiology of Prediabetes in a Biracial Cohort (POP-ABC)/Pathobiology and Reversibility of Prediabetes in a Biracial Cohort (PROP-ABC) and the Diabetes Prevention Program (DPP)/DPP Outcomes Study (DPPOS). Normoglycemic POP-ABC/PROP-ABC were followed for 10 years for progression to prediabetes and offered lifestyle intervention to reverse prediabetes. The DPP/DPPOS participants had prediabetes at enrollment, were randomized to placebo, lifestyle intervention, or metformin treatment, and followed for 11 years for progression to T2DM. Using a case-control design, we analyze 76 targeted plasma sphingolipids as predictors of progression from NGR to prediabetes (Aim 1), prediabetes to T2DM (Aim 2), response to interventions (Aim 3), and development of diabetes complications (Aim 4). A sample size of 600 subjects provides >80% power to detect a 20% difference in sphingolipid profiles between comparison groups (alpha = 0.01). At enrollment, POP-ABC participants had a mean age of 47.7 ± 9.00 years, body mass index (BMI) 30.4 ± 6.10 kg/m2, fasting glucose 92.9 ± 6.90 mg/dL, and 2-h glucose 130 ± 28.8 mg/dL; DPP participants had a mean age of 51.9 ± 9.44 years, BMI 33.7 ± 6.33 kg/m2, fasting glucose 106 ± 7.88 mg/dL, and 2-h glucose 164 ± 16.9 mg/dL. Among normoglycemic participants, those with parental history of T2DM had significantly higher baseline levels of total sphingomyelins, and lower levels of total ceramides and sphingosine, compared with control subjects without familial diabetes history. As the first such study in longitudinal human cohorts, CASPID will elucidate the role of sphingolipids in the pathogenesis of dysglycemia and facilitate the discovery of novel predictive and prognostic biomarkers.


Assuntos
Diabetes Mellitus Tipo 2 , Estado Pré-Diabético , Adulto , Humanos , Pessoa de Meia-Idade , Glicemia , Ceramidas , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/complicações , Glucose , Esfingolipídeos
14.
Exp Eye Res ; 231: 109487, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37084874

RESUMO

Corneal haze brought on by fibrosis due to insult can lead to partial or complete vision loss. Currently, corneal transplantation is the gold standard for treating severe corneal fibrosis, which comes with the risk of rejection and the issue of donor tissue shortages. Sphingolipids (SPLs) are known to be associated with fibrosis in various tissues and organs, including the cornea. We previously reported that SPLs are tightly related to Transforming Growth Factor ß (TGF-ß) signaling and corneal fibrogenesis. This study aimed to elucidate the interplay of SPLs, specifically sphingosine-1-phosphate (S1P) signaling, and its' interactions with TGF-ß signaling through detailed analyses of the corresponding downstream signaling targets in the context of corneal fibrosis, in vitro. Healthy human corneal fibroblasts (HCFs) were isolated, plated on polycarbonate membranes, and stimulated with a stable Vitamin C derivative. The 3D constructs were treated with either 5 µM sphingosine-1-phosphate (S1P), 5 µM SPHK I2 (I2; inhibitor of sphingosine kinase 1, one of the two enzymes responsible for generating S1P in mammalian cells), 0.1 ng/mL TGF-ß1, or 0.1 ng/mL TGF-ß3. Cultures with control medium-only served as controls. All 3D constructs were examined for protein expression of fibrotic markers, SPLs, TGF-ßs, and relevant downstream signaling pathways. This data revealed no significant changes in any LTBP (latent TGF-ß binding proteins) expression when stimulated with S1P or I2. However, LTBP1 was significantly upregulated via stimulation of TGF-ß1 and TGF-ß3, whereas LTBP2 was significantly upregulated only with TGF-ß3 stimulation. Significant downregulation of TGF-ß receptor II (TGF-ßRII) following S1P stimulation but significant upregulation following I2 stimulation was observed. Following TGF-ß1, S1P, and I2 stimulation, phospho-SMAD2 (pSMAD2) was significantly downregulated. Furthermore, I2 stimulation led to significant downregulation of SMAD4. Adhesion/proliferation/transcription regulation targets, SRC, FAK, and pERK 1/2 were all significantly downregulated by exogenous S1P, whereas I2 only significantly downregulated FAK. Exogenous TGF-ß3 caused significant upregulation of AKT. Interestingly, both I2 and TGF-ß3 caused significant downregulation of JNK expression. Lastly, TGF-ß1 led to significant upregulation of sphingosine kinase 1 (SphK1) and sphingosine-1-phosphate receptor 3 (S1PR3), whereas TGF-ß3 caused significant upregulation of only SphK1. Together with previously published work from our group and others, S1P inhibition exhibits great potential as an efficacious anti-fibrotic modality in human corneal stromal ECM. The current findings shed further light on a very complex and rather incompletely investigated mechanism, and cement the intricate crosstalk between SPLs and TGF-ß in corneal fibrogenesis. Future studies will dictate the potential of utilizing SPLs/TGF-ß signaling modulators as novel therapeutics in corneal fibrosis.


Assuntos
Esfingolipídeos , Fator de Crescimento Transformador beta , Animais , Humanos , Esfingolipídeos/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Substância Própria/metabolismo , Fator de Crescimento Transformador beta3 , Transdução de Sinais , Lisofosfolipídeos/farmacologia , Lisofosfolipídeos/metabolismo , Esfingosina/farmacologia , Esfingosina/metabolismo , Fibrose , Mamíferos , Proteínas de Ligação a TGF-beta Latente
15.
Methods Mol Biol ; 2625: 7-15, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36653629

RESUMO

Sucrose gradient centrifugation is a very useful technique for isolating specific membrane types based on their size and density. This is especially useful for detecting fatty acids and lipid molecules that are targeted to specialized membranes. Without fractionation, these types of molecules could be below the levels of detection after being diluted out by the more abundant lipid molecules with a more ubiquitous distribution throughout the various cell membranes. Isolation of specific membrane types where these lipids are concentrated allows for their detection and analysis. We describe herein our synaptic membrane isolation protocol that produces excellent yield and clear resolution of five major membrane fractions from a starting neural tissue homogenate: P1 (nuclear), P2 (cytoskeletal), P3 (neurosynaptosomal), PSD (post-synaptic densities), and SV (synaptic vesicle).


Assuntos
Sacarose , Membranas Sinápticas , Membranas Sinápticas/metabolismo , Sacarose/metabolismo , Centrifugação com Gradiente de Concentração/métodos , Membrana Celular , Centrifugação , Lipídeos , Fracionamento Celular/métodos
16.
Methods Mol Biol ; 2625: 231-240, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36653647

RESUMO

The bioactive sphingolipid sphingosine 1-phosphate (S1P) and its five cognate receptors (S1PR1-5) have been implicated to play important role in multiple aspects of human physiology and diseases. The S1P-S1PR1 signaling axis in endothelial cells is crucial for establishing flow competent blood vessels. The role of S1P in neovascular pathology is of great interest and is evolving as a promising target for treatment. Here we describe an easy and affordable in vivo model of corneal neovascularization using an alkali chemical burn to the cornea. This method gives a consistent and easy-to-quantitate procedure for neovascularization and angiogenesis studies.


Assuntos
Células Endoteliais , Receptores de Lisoesfingolipídeo , Humanos , Esfingosina , Lisofosfolipídeos , Córnea
17.
Methods Mol Biol ; 2625: 337-345, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36653655

RESUMO

Since its discovery, the bioactive sphingolipid sphingosine 1-phosphate (S1P) has been shown to involve in a myriad of cellular and physiological processes. In the process of tissue healing, S1P plays an important role in both normal and pathological healing, leading to fibrosis in multiple tissues including the cornea. Cornea covers the anterior portion of the eye and is responsible for the refraction of light. Corneal transparency is essential to obtain a clear vision, and a proper wound healing process is necessary for a clear cornea. Even though S1P is indicated to be a critical player in corneal fibrosis, we lack a detailed understanding of the role of S1P signaling in corneal wound healing and fibrosis. Herein, we describe a methodology to characterize the in-vivo wound healing process of the cornea using an easy and affordable imaging-based assay. This gives a consistent and easy way to characterize the wound and also the longitudinal healing process.


Assuntos
Lesões da Córnea , Esfingosina , Humanos , Lisofosfolipídeos , Córnea , Fibrose
18.
Cells ; 11(19)2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36231042

RESUMO

Sphingolipids (SPLs) play a diverse role in maintaining cellular homeostasis. Dysregulated SPL metabolism is associated with pathological changes in stressed and diseased cells. This study investigates differences in SPL metabolism between cultured human primary retinal endothelial (HREC) and murine microglial cells (BV2) in normal conditions (normal glucose, NG, 5 mM) and under high-glucose (HG, 25 mM)-induced stress by sphingolipidomics, immunohistochemistry, biochemical, and molecular assays. Measurable differences were observed in SPL profiles between HREC and BV2 cells. High-glucose treatment caused a >2.5-fold increase in the levels of Lactosyl-ceramide (LacCer) in HREC, but in BV2 cells, it induced Hexosyl-Ceramides (HexCer) by threefold and a significant increase in Sphingosine-1-phosphate (S1P) compared to NG. Altered SPL profiles coincided with changes in transcript levels of inflammatory and vascular permeability mediators in HREC and inflammatory mediators in BV2 cells. Differences in SPL profiles and differential responses to HG stress between endothelial and microglial cells suggest that SPL metabolism and signaling differ in mammalian cell types and, therefore, their pathological association with those cell types.


Assuntos
Microglia , Esfingolipídeos , Animais , Ceramidas/metabolismo , Glucose , Humanos , Mediadores da Inflamação , Mamíferos/metabolismo , Camundongos , Microglia/metabolismo , Esfingolipídeos/metabolismo
19.
Cells ; 11(18)2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-36139489

RESUMO

The purpose of this study was to investigate the role of sphingosine kinase 1 (SphK1), which generates sphingosine-1-phosphate (S1P), in corneal neovascularization (NV). Wild-type (WT) and Sphk1 knockout (Sphk1-/-) mice received corneal alkali-burn treatment to induce corneal NV by placing a 2 mm round piece of Whatman No. 1 filter paper soaked in 1N NaOH on the center of the cornea for 20 s. Corneal sphingolipid species were extracted and identified using liquid chromatography/mass spectrometry (LC/MS). The total number of tip cells and those positive for ethynyl deoxy uridine (EdU) were quantified. Immunocytochemistry was done to examine whether pericytes were present on newly forming blood vessels. Cytokine signaling and angiogenic markers were compared between the two groups using multiplex assays. Data were analyzed using appropriate statistical tests. Here, we show that ablation of SphK1 can significantly reduce NV invasion in the cornea following injury. Corneal sphingolipid analysis showed that total levels of ceramides, monohexosyl ceramides (HexCer), and sphingomyelin were significantly elevated in Sphk-/- corneas compared to WT corneas, with a comparable level of sphingosine among the two genotypes. The numbers of total and proliferating endothelial tip cells were also lower in the Sphk1-/- corneas following injury. This study underscores the role of S1P in post-injury corneal NV and raises further questions about the roles played by ceramide, HexCer, and sphingomyelin in regulating corneal NV. Further studies are needed to unravel the role played by bioactive sphingolipids in maintenance of corneal transparency and clear vision.


Assuntos
Lesões da Córnea , Esfingosina , Animais , Ceramidas , Córnea , Citocinas , Modelos Animais de Doenças , Lisofosfolipídeos , Camundongos , Neovascularização Patológica , Fosfotransferases (Aceptor do Grupo Álcool) , Hidróxido de Sódio , Esfingolipídeos , Esfingomielinas , Esfingosina/análogos & derivados , Esfingosina/farmacologia , Uridina
20.
Ocul Surf ; 26: 100-110, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35973562

RESUMO

Inflammation occurs in response to tissue injury and invasion of microorganisms and is carried out by the innate and adaptive immune systems, which are regulated by numerous chemokines, cytokines, and lipid mediators. There are four major families of bioactive lipid mediators that play an integral role in inflammation - eicosanoids, sphingolipids (SPL), specialized pro-resolving mediators (SPM), and endocannabinoids. SPL have been historically recognized as important structural components of cellular membranes; their roles as bioactive lipids and inflammatory mediators are recent additions. Major SPL metabolites, including sphingomyelin, ceramide, ceramide 1-phosphate (C1P), sphingosine, sphingosine 1-phosphate (S1P), and their respective enzymes have been studied extensively, primarily in cell-culture and animal models, for their roles in cellular signaling and regulating inflammation and apoptosis. Less focus has been given to the involvement of SPL in eye diseases. As such, the aim of this review was to examine relationships between the SPL family and ocular surface diseases, focusing on their role in disease pathophysiology and discussing the potential of therapeutics that disrupt SPL pathways.


Assuntos
Oftalmopatias , Disfunção da Glândula Tarsal , Animais , Esfingolipídeos/metabolismo , Inflamação/metabolismo , Apoptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...