Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rice (N Y) ; 17(1): 20, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526679

RESUMO

The aus (Oryza sativa L.) varietal group comprises of aus, boro, ashina and rayada seasonal and/or field ecotypes, and exhibits unique stress tolerance traits, making it valuable for rice breeding. Despite its importance, the agro-morphological diversity and genetic control of yield traits in aus rice remain poorly understood. To address this knowledge gap, we investigated the genetic structure of 181 aus accessions using 399,115 SNP markers and evaluated them for 11 morpho-agronomic traits. Through genome-wide association studies (GWAS), we aimed to identify key loci controlling yield and plant architectural traits.Our population genetic analysis unveiled six subpopulations with strong geographical patterns. Subpopulation-specific differences were observed in most phenotypic traits. Principal component analysis (PCA) of agronomic traits showed that principal component 1 (PC1) was primarily associated with panicle traits, plant height, and heading date, while PC2 and PC3 were linked to primary grain yield traits. GWAS using PC1 identified OsSAC1 on Chromosome 7 as a significant gene influencing multiple agronomic traits. PC2-based GWAS highlighted the importance of OsGLT1 and OsPUP4/ Big Grain 3 in determining grain yield. Haplotype analysis of these genes in the 3,000 Rice Genome Panel revealed distinct genetic variations in aus rice.In summary, this study offers valuable insights into the genetic structure and phenotypic diversity of aus rice accessions. We have identified significant loci associated with essential agronomic traits, with GLT1, PUP4, and SAC1 genes emerging as key players in yield determination.

2.
J Biosci ; 452020.
Artigo em Inglês | MEDLINE | ID: mdl-32661213

RESUMO

The sticky rice of Assam is traditionally classified as bora (glutinous) and chokuwa (semi-glutinous) based on their stickiness after cooking. The Waxy (Wx) gene encodes for granule-bound starch synthase (GBSS) that controls the synthesis of amylose, which is a key determinant of rice end-use quality attributes. In this report, we analysed the level of variation in grain quality traits in a collection of bora and chokuwa cultivars, and examined the nucleotide diversity at the Wx locus of selected rice accessions to identify the possible cause of low-amylose in these rice cultivar groups. The Wx gene sequencing from 24 bora and chokuwa cultivars revealed several nucleotide variations that can explain the variation in the amylose phenotypes. The nucleotide polymorphisms in the downstream intron regions were similar to those reported in Bangladeshi Beruin cultivars. Among the Wx polymorphisms, the CTn microsatellite in exon 1 and G/T SNP in intron 1 (G/T-Int1) should be considered for marker assisted breeding involving bora cultivars. The Wx gene tree, classified the bora accessions possessing the G/T-Int1 SNP as japonicas. However, cluster analysis using microsatellite markers classified the bora and chokuwa cultivars as indica, and intermediate of indica-aus. The findings of this study supplemented our understanding on the evolution of the Wx gene under human selection. The results will assist plant breeders to effectively improve the bora and chokuwa landraces.


Assuntos
Amilose/genética , Variação Genética/genética , Oryza/genética , Sintase do Amido/genética , Regulação da Expressão Gênica de Plantas/genética , Repetições de Microssatélites/genética , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética , Análise de Sequência de DNA
3.
Curr Protein Pept Sci ; 18(9): 956-965, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27875969

RESUMO

The structure and function of proteins involved in plant-microbe interactions is investigated through large-scale proteomics technology in a complex biological sample. Since the whole genome sequences are now available for several plant species and microbes, proteomics study has become easier, accurate and huge amount of data can be generated and analyzed during plant-microbe interactions. Proteomics approaches are highly important and relevant in many studies and showed that only genomics approaches are not sufficient enough as much significant information are lost as the proteins and not the genes coding them are final product that is responsible for the observed phenotype. Novel approaches in proteomics are developing continuously enabling the study of the various aspects in arrangements and configuration of proteins and its functions. Its application is becoming more common and frequently used in plant-microbe interactions with the advancement in new technologies. They are more used for the portrayal of cell and extracellular destructiveness and pathogenicity variables delivered by pathogens. This distinguishes the protein level adjustments in host plants when infected with pathogens and advantageous partners. This review provides a brief overview of different proteomics technology which is currently available followed by their exploitation to study the plant-microbe interaction.


Assuntos
Interações Microbianas , Plantas/microbiologia , Proteínas/análise , Proteômica/métodos , Bactérias/química , Genômica , Vírus/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...