Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Chem ; 96: 107617, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34942453

RESUMO

The intervention into the cell cycle progression by administering microtubule over-stabilizing ligands that arrest the mitotic cell division by preventing spindle dissociation, is a promising strategy to fight against cancers. The building blocks of the microtubules and the spindles, i.e. the α,ß-tubulin dimer, upon binding of such ligands, stay more comfortably in the microtubular multimeric form; the phenomenon of which is the key to the said over-stabilization. Using two such over-stabilizing ligands, Taxol and Taxotere, the present work reports the collective changes that these ligands induce on the structure and dynamics of the α,ß-tubulin dimer which could be reconciled as the molecular basis of the over-stabilization of the microtubules; the trends have been found to be statistically significant across all independent calculations on them. The ligand binding increases the coherence between the residue communities of the two opposite faces of the ß-subunit, which in a periodic arrangement in microtubule are knwon to form intermolecular contact with each other. This is likely to create an indirect cooperativity between those structural regions and this is a consequence of the reshuffling of the internal network of interactions upon ligand binding. Such reorganizations are also complemented by the increased contributions of the softer modes of the intrinsic dynamics more, which is likely to increase the plasticity of the system favourable for making structural adjustments in a multimer. Further, the ligands are able to compensate the drawback of lacking one phosphate group in protein-GDP interactions compared to the same for protein-GTP and this is in agreement with the hints form the earlier reports. The findings form a mechanistic basis of the enhanced capacity of the α,ß-tubulin dimer to get more favourably accommodated into the microtubule superstructure upon binding either of Taxol and Taxotere.


Assuntos
Docetaxel/farmacologia , Microtúbulos/efeitos dos fármacos , Paclitaxel/farmacologia , Tubulina (Proteína)/metabolismo , Docetaxel/química , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Ligantes , Microtúbulos/metabolismo , Modelos Moleculares , Conformação Molecular , Paclitaxel/química , Conformação Proteica
2.
Bioinformatics ; 38(6): 1752-1753, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34971366

RESUMO

SUMMARY: Information regarding pathways through voids in biomolecules and their roles in ligand transport is critical to our understanding of the function of many biomolecules. Recently, the advent of high-throughput molecular dynamics simulations has enabled the study of these pathways, and of rare transport events. However, the scale and intricacy of the data produced requires dedicated tools in order to conduct analyses efficiently and without excessive demand on users. To fill this gap, we developed the TransportTools, which allows the investigation of pathways and their utilization across large, simulated datasets. TransportTools also facilitates the development of custom-made analyses. AVAILABILITY AND IMPLEMENTATION: TransportTools is implemented in Python3 and distributed as pip and conda packages. The source code is available at https://github.com/labbit-eu/transport_tools. Data are available in a repository and can be accessed via a link: https://doi.org/10.5281/zenodo.5642954. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Bibliotecas , Software , Ligantes , Biblioteca Gênica , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...