Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(33): 6853-6863, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39137332

RESUMO

The photochemistry and photophysics of thiocarbonyl compounds, analogues of carbonyl compounds with sulfur, have long been overshadowed by their counterparts. However, recent interest in visible light reactions has reignited attention toward these compounds due to their unique excited-state properties. This study delves into the ultrafast dynamics of 7-diethylaminothiocoumarin (TC1), a close analogue of the well-known probe molecule coumarin 1 (C1), to estimate intersystem crossing rates, understand the mechanisms of fluorescence and phosphorescence, and evaluate TC1's potential as a solvation dynamics probe. Enclosing TC1 within an organic capsule indicates its potential applications, even in aqueous environments. Ultrafast studies reveal a dominant subpicosecond intersystem crossing process, indicating the importance of upper excited singlet and triplet states in the molecule's photochemistry. The distinct fluorescence and phosphorescence origins, along with the presence of closely spaced singlet excited states, support the observed efficient intersystem crossing. The sulfur atom alters the excited-state behavior, shedding light on reactive triplet states and paving the way for further investigations.

2.
J Phys Chem B ; 126(37): 7077-7087, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36083211

RESUMO

The remarkable photostability of canonical nucleobases makes them ideal building blocks for DNA and RNA. Even minor structural changes are expected to lead to drastic alteration of their subpicosecond excited state lifetimes. However, it is interesting to note that while the 9H- and 7H-amino tautomers of adenine possess drastically different lifetimes, 9H- and 7H-keto guanine possess similar excited state lifetimes. With an aim to explain this unexpected difference in sensitivity of lifetimes to tautomerization, we have investigated the excited state relaxation mechanism of UV-excited adenine and guanine tautomers using surface hopping based nonadiabatic molecular dynamics. We find that internal conversion in both guanine tautomers is almost barrierless while both adenine tautomers encounter significant barriers before they can deactivate. Moreover, the major deactivation channel (C2-puckering) in 9H-amino adenine is overall more efficient than the one (C6-puckering) in the 7H-amino form. We trace this difference to the frequent rotation of the amino group which disrupts its conjugation with the heterocyclic ring thereby reducing the strength of nonadiabatic coupling and, hence, delaying internal conversion.


Assuntos
Adenina , Simulação de Dinâmica Molecular , Adenina/química , Guanina/química , RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA