Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Prod Rep ; 39(5): 926-945, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34860231

RESUMO

Covering: 2012 to 2021Cyclopropane attracts wide interests in the fields of synthetic and pharmaceutical chemistry, and chemical biology because of its unique structural and chemical properties. This structural motif is widespread in natural products, and is usually essential for biological activities. Nature has evolved diverse strategies to access this structural motif, and increasing knowledge of the enzymes forming cyclopropane (i.e., cyclopropanases) has been revealed over the last two decades. Here, the scientific literature from the last two decades relating to cyclopropane biosynthesis is summarized, and the enzymatic cyclopropanations, according to reaction mechanism, which can be grouped into two major pathways according to whether the reaction involves an exogenous C1 unit from S-adenosylmethionine (SAM) or not, is discussed. The reactions can further be classified based on the key intermediates required prior to cyclopropane formation, which can be carbocations, carbanions, or carbon radicals. Besides the general biosynthetic pathways of the cyclopropane-containing natural products, particular emphasis is placed on the mechanism and engineering of the enzymes required for forming this unique structure motif.


Assuntos
Produtos Biológicos , Produtos Biológicos/química , Vias Biossintéticas , Ciclopropanos , S-Adenosilmetionina/metabolismo
2.
Angew Chem Int Ed Engl ; 59(23): 8880-8884, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32065719

RESUMO

Sulfur-based homolytic substitution (SH reaction) plays an important role in synthetic chemistry, yet whether such a reaction could occur on the positively charged sulfonium compounds remains unknown. In the study of the anaerobic coproporphyrinogen III oxidase HemN, a radical S-adenosyl-l-methionine (SAM) enzyme involved in heme biosynthesis, we observed the production of di-(5'-deoxyadenosyl)methylsulfonium, which supports a deoxyadenosyl (dAdo) radical-mediated SH reaction on the sulfonium center of SAM. The sulfonium-based SH reactions were then investigated in detail by density functional theory calculations and model reactions, which showed that this type of reactions is thermodynamically favorable and kinetically competent. These findings represent the first report of sulfonium-based SH reactions, which could be useful in synthetic chemistry. Our study also demonstrates the remarkable catalytic promiscuity of the radical SAM superfamily enzymes.


Assuntos
Enzimas/química , Enzimas/metabolismo , S-Adenosilmetionina/metabolismo , Compostos de Sulfônio/química , Biocatálise , Radicais Livres/química , Cinética , Termodinâmica
3.
Angew Chem Int Ed Engl ; 58(52): 18793-18797, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31565827

RESUMO

Sactionine-containing antibiotics (sactibiotics) are a growing class of peptide antibiotics belonging to the ribosomally synthesized and post-translationally modified peptide (RiPP) superfamily. We report the characterization of thuricin Z, a novel sactibiotic from Bacillus thuringiensis. Unusually, the biosynthesis of thuricin Z involves two radical S-adenosylmethionine (SAM) enzymes, ThzC and ThzD. Although ThzC and ThzD are highly divergent from each other, these two enzymes produced the same sactionine ring in the precursor peptide ThzA in vitro. Thuricin Z exhibits narrow-spectrum antibacterial activity against Bacillus cereus. A series of analyses, including confocal laser scanning microscopy, ultrathin-sectioning transmission electron microscopy, scanning electron microscopy, and large-unilamellar-vesicle-based fluorescence analysis, suggested that thuricin Z binds to the bacterial cell membrane and leads to membrane permeabilization.


Assuntos
Antibacterianos/uso terapêutico , Bacteriocinas/uso terapêutico , Membrana Celular/efeitos dos fármacos , Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Humanos
4.
Org Biomol Chem ; 17(7): 1809-1812, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30520933

RESUMO

The radical S-adenosylmethionine (SAM) superfamily is currently the largest known enzyme family. These enzymes reductively cleave SAM to produce a highly reactive 5'-deoxyadenosyl (dAdo) radical, which abstracts a hydrogen from the substrate and initiates diverse reactions. The canonic dAdo radical-mediated hydrogen abstraction can be changed to radical addition reactions by using olefin-containing substrate analogues, which result in adenosylation reactions. Here we report investigation of the adenosylation reactions catalyzed by four radical SAM l-Tyr lyases (RSTLs), including HydG, FbiC, and two ThiH enzymes from different organisms. We show RSTLs have diverse substrate specificity, and ThiH from E. coli exhibits the highest substrate tolerance toward the tested substrates. We also show ThiH from Clostridium berjerinckii does not act on 4-amino-l-phenylalanine, but catalyzes adenosylation of the corresponding olefin-containing analogue, suggesting adenosylation may occur more easily than the canonic radical SAM reactions. Our study highlights the remarkable catalytic promiscuity of radical SAM enzyme and the potential in using these enzymes for the synthesis of nucleotide-containing compounds.


Assuntos
Adenosina/biossíntese , S-Adenosilmetionina/metabolismo , Tirosina Fenol-Liase/metabolismo , Adenosina/química , Biocatálise , Radicais Livres/química , Radicais Livres/metabolismo , Estrutura Molecular , S-Adenosilmetionina/química
5.
Biochemistry ; 58(1): 36-39, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30398855

RESUMO

Sulfoxides and sulfones are commonly found in nature as a result of thioether oxidation, whereas only a very few enzymes have been found to metabolize these compounds. Utilizing the strong reduction potential of the [4Fe-4S] cluster of radical S-adenosyl-l-methionine (SAM) enzymes, we herein report the first enzyme-catalyzed reductive cleavage of sulfoxide and sulfone. We show two radical SAM enzymes, tryptophan lyase NosL and the class C radical SAM methyltransferase NosN, are able to act on a sulfoxide SAHO and a sulfone SAHO2, both of which are structurally similar to SAM. NosL cleaves all of the three bonds (i.e., S-C(5'), S-C(γ), and S-O) connecting the sulfur center of SAHO, with a preference for S-C(5') bond cleavage. Similar S-C cleavage activity was also found for SHAO2, but no S-O cleavage was observed. In contrast to NosL, NosN almost exclusively cleaves the S-C(5') bonds of SAHO and SAHO2 with much higher efficiencies. Our study provides valuable insights into the [4Fe-4S] cluster-mediated reduction reactions and highlights the remarkable catalytic promiscuity of radical SAM enzymes.


Assuntos
Carbono-Carbono Liases/metabolismo , Metiltransferases/metabolismo , S-Adenosilmetionina/química , Safrol/análogos & derivados , Sulfonas/química , Triptofano/metabolismo , S-Adenosilmetionina/metabolismo , Safrol/química , Safrol/metabolismo , Sulfonas/metabolismo
6.
Org Lett ; 20(23): 7670-7673, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30451505

RESUMO

The cypemycin decarboxylase CypD is investigated by using a synthetic oligopeptide, which contains the to-be-cyclized dehydroalanine (Dha) residue. It was shown that CypD efficiently catalyzes the decarboxylation of this Dha-containing peptide, but the expected AviCys ring is not formed in the product, suggesting that CypD alone is not enough to form the AviCys ring. It was also shown that the Dha-containing peptide is a better substrate than two similar peptides with a Ser or a Cys residue, supporting that, in cypemycin biosynthesis, Dha formation is prior to decarboxylation of the C-terminal Cys.

7.
Synth Syst Biotechnol ; 3(3): 159-162, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30345401

RESUMO

The linaridin antibiotic cypemycin is a ribosomal synthesized and post-translationally modified peptide (RiPP) that possesses potent activity against mouse leukemia cells. This peptide natural product contains an S-[(Z)-2-aminovinyl]-d-cysteine (AviCys) moiety in the C-terminus. Formation of AviCys moiety requires an oxidative decarboxylation of the C-terminal Cys of the precursor peptide CypA, and this process is catalyzed by a flavin-containing protein CypD. In this work, we tested CypD substrate specificity with a series of synthetic oligopeptides. We show that most of the N-terminal sequence of CypA is not required for CypD activity, and the C-terminal three residues serve as the minimal structural element for enzyme recognition. We also show that CypD tolerates various substrates with modified C-termini, allowing for the generation of four novel cypemycin variants with modified AviCys moiety by site direct mutagenesis of the precursor peptide CypA. Our study demonstrates the relaxed substrate specificity of CypD and lays a foundation for future bioengineering of AviCys-containing natural products.

8.
Angew Chem Int Ed Engl ; 57(22): 6601-6604, 2018 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-29603551

RESUMO

The radical S-adenosylmethionine (SAM) superfamily enzymes cleave SAM reductively to generate a highly reactive 5'-deoxyadenosyl (dAdo) radical, which initiates remarkably diverse reactions. Unlike most radical SAM enzymes, the class C radical SAM methyltransferase NosN binds two SAMs in the active site, using one SAM to produce a dAdo radical and the second as a methyl donor. Here, we report a mechanistic investigation of NosN in which an allyl analogue of SAM (allyl-SAM) was used. We show that NosN cleaves allyl-SAM efficiently and the resulting dAdo radical can be captured by the olefin moieties of allyl-SAM or 5'-allylthioadenosine (ATA), the latter being a derivative of allyl-SAM. Remarkably, we found that NosN produced two distinct sets of products in the presence and absence of the methyl acceptor substrate, thus suggesting substrate-triggered production of ATA from allyl-SAM. We also show that NosN produces S-adenosylhomocysteine from 5'-thioadenosine and homoserine lactone. These results support the idea that 5'-methylthioadenosine is the direct methyl donor in NosN reactions, and demonstrate great potential to modulate radical SAM enzymes for novel catalytic activities.

9.
J Org Chem ; 83(13): 7271-7275, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29357665

RESUMO

A chemoenzymatic approach for the synthesis of teixobactin analogues has been established by using the tandem thioesterase (TE) of the nonribosomal peptide synthase (NRPS) Txo2. We show that, unlike the closely related counterparts involved in lysobactin biosynthesis (in which the N-terminal TE is solely responsible for the lactonization reaction), the two teixobactin TE domains are functionally exchangeable and likely act synergistically, representing an unprecedented off-loading mechanism in NRPS enzymology. The substrate specificity of this tandem TE was also investigated in this study.


Assuntos
Depsipeptídeos/síntese química , Esterases/metabolismo , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão/métodos , Depsipeptídeos/química , Espectrometria de Massas/métodos , Conformação Proteica , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
10.
Chemistry ; 24(21): 5406-5422, 2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28991382

RESUMO

Bacterial resistance to existing drugs is becoming a serious public health issue, urging extensive search for new antibiotics. Teixobactin, a cyclic depsipeptide discovered in a screen of uncultured bacteria, shows potent activity against all the tested Gram-positive bacteria. Remarkably, no teixobactin-resistant bacterial strain has been obtained despite extensive efforts, highlighting the great potential of teixobactin as a lead compound in the fight against antimicrobial resistance (AMR). This review summarizes recent progresses in the understanding of many aspects of teixobactin, including chemical structure, biological activity, biosynthetic pathway, and mode of action. We also discuss the different synthetic strategies in producing teixobactin and its analogues, and the structure-activity relationship (SAR) studies.


Assuntos
Depsipeptídeos/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Antibacterianos/química , Infecções Bacterianas , Depsipeptídeos/química , Humanos , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade
11.
Eur J Med Chem ; 143: 632-645, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29216562

RESUMO

Sexually transmitted diseases like trichomoniasis along with opportunistic fungal infections like candidiasis are major global health burden in female reproductive health. In this context a novel non-nitroimidazole class of substituted carbamothioic amine-1-carbothioic thioanhydride series was designed, synthesized, evaluated for trichomonacidal and fungicidal activities, and was found to be more active than the standard drug Metronidazole (MTZ). Compounds were trichomonicidal in the MIC ranges of 4.77-294.1 µM and 32.46-735.20 µM against MTZ-susceptible and -resistant strains, respectively. Further, compounds inhibited the growth of at least two out of ten fungal strains tested at MIC of 7.50-240.38 µM. The most active compound (20) of this series was 3.8 and 9.5 fold more active than the MTZ against the two Trichomonas strains tested. Compound 20 also significantly inhibited the sulfhydryl groups present over Trichomonas vaginalis and was found to be more active than the MTZ in vivo. Further, a docking analysis carried out with cysteine proteases supported their thiol inhibiting ability and preliminary pharmacokinetic study has shown good distribution and systemic clearance.


Assuntos
Anidrases Carbônicas/farmacologia , Desenho de Fármacos , Fungicidas Industriais/farmacologia , Compostos de Sulfidrila/farmacologia , Trichomonas/efeitos dos fármacos , Anidrases Carbônicas/síntese química , Anidrases Carbônicas/química , Relação Dose-Resposta a Droga , Fungicidas Industriais/síntese química , Fungicidas Industriais/química , Metronidazol/química , Metronidazol/farmacologia , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Compostos de Sulfidrila/síntese química , Compostos de Sulfidrila/química , Trichomonas/crescimento & desenvolvimento
12.
Eur J Med Chem ; 132: 204-218, 2017 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-28363155

RESUMO

A series of seventeen piperazine derivatives have been synthesized and biologically evaluated for the management of andropause-associated prostatic disorders and depression. Five compounds 16, 19, 20, 21 and 22 significantly inhibited proliferation of androgen-sensitive LNCaP prostatic cell line with EC50 values of 12.4 µM, 15.6 µM, 11.8 µM, 10.4 µM, 12.2 µM respectively and decreased Ca2+ entry through adrenergic-receptor α1A blocking activity. Anti-androgenic behaviour of compound 19 and 22 was evident by decreased luciferase activity. The high EC50 value in AR-negative cells PC3 and DU145 suggested that the cytotoxicity of compounds was due to AR down regulation. Compound 19 reduced the prostate weight of rats by 53.8%. Further, forced-swimming and tail-suspension tests revealed antidepressant-like activity of compound 19, lacking effects on neuromuscular co-ordination. In silico ADMET predictions revealed that the compound 19 had good oral absorption, aqueous solubility, non-hepatotoxic and good affinity for plasma protein binding. Pharmacokinetic and tissue uptake of 19 at 10 mg/kg demonstrated an oral bioavailability of 35.4%. In silico docking studies predicted similar binding pattern of compound 19 on androgen receptor as hydroxyflutamide. Compound 19 appears to be a unique scaffold with promising activities against androgen associated prostatic disorders in males like prostate cancer and BPH and associated depression.


Assuntos
Antagonistas de Androgênios/síntese química , Andropausa , Depressão/tratamento farmacológico , Piperazinas/farmacocinética , Doenças Prostáticas/tratamento farmacológico , Antagonistas de Androgênios/farmacologia , Animais , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Humanos , Masculino , Simulação de Acoplamento Molecular , Piperazina , Piperazinas/síntese química , Piperazinas/química , Ratos , Receptores Androgênicos/efeitos dos fármacos
13.
Mol Carcinog ; 56(4): 1266-1280, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27813185

RESUMO

Targeting tumor DNA damage and p53 pathway is a clinically established strategy in the development of cancer chemotherapeutics. Majority of anti-cancer drugs are delivered through parenteral route for reasons like severe toxicity, lack of stability, and poor enteral absorption. Current DNA targeting drugs in clinical like anthracycline suffers from major drawbacks like cardiotoxicity. Here, we report identification of a new orally active small molecule curcumin-triazole conjugate (CT-1) with significant anti-breast cancer activity in vitro and in vivo. CT-1 selectively and significantly inhibits viability of breast cancer cell lines; retards cells cycle progression at S phase and induce mitochondrial-mediated cell apoptosis. CT-1 selectively binds to minor groove of DNA and induces DNA damage leading to increase in p53 along with decrease in its ubiquitination. Inhibition of p53 with pharmacological inhibitor as well as siRNA revealed the necessity of p53 in CT-1-mediated anti-cancer effects in breast cancer cells. Studies using several other intact p53 and deficient p53 cancer cell lines further confirmed necessity of p53 in CT-1-mediated anti-cancer response. Pharmacological inhibition of pan-caspase showed CT-1 induces caspase-dependent cell death in breast cancer cells. Most interestingly, oral administration of CT-1 induces significant inhibition of tumor growth in LA-7 syngeneic orthotropic rat mammary tumor model. CT-1 treated mammary tumor shows enhancement in DNA damage, p53 upregulation, and apoptosis. Collectively, CT-1 exhibits potent anti-cancer effect both in vitro and in vivo and could serve as a safe orally active lead for anti-cancer drug development. © 2016 Wiley Periodicals, Inc.


Assuntos
Antineoplásicos/química , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Mama/efeitos dos fármacos , Curcumina/análogos & derivados , Curcumina/uso terapêutico , Animais , Antineoplásicos/farmacologia , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Curcumina/farmacologia , DNA/genética , DNA/metabolismo , Dano ao DNA/efeitos dos fármacos , Feminino , Humanos , Simulação de Acoplamento Molecular , Ratos , Triazóis/química , Triazóis/farmacologia , Proteína Supressora de Tumor p53/metabolismo
14.
Eur J Med Chem ; 124: 820-839, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27643640

RESUMO

Trichomoniasis is the most prevalent, non-viral sexually transmitted diseases (STD) caused by amitochondriate protozoan Trichomonas vaginalis. Increased resistance of T. vaginalis to the marketed drug Metronidazole necessitates the development of newer chemical entities. A library of sixty 2-methyl-4/5-nitroimidazole derivatives was synthesized via nucleophilic ring opening reaction of epoxide and the efficacies against drug-susceptible and -resistant Trichomonas vaginalis were evaluated. All the molecules except two were found to be active against both susceptible and resistant strains with MICs ranging 8.55-336.70 µM and 28.80-1445.08 µM, respectively. Most of the compounds were remarkably more effective than the standard Metronidazole. This study analyzes the in vitro and in vivo activities of the new 5-nitroimidazoles, which were found to be safe against human cervical HeLa cells with good selectivity index. The exploration of SAR by the synthesis of four different prototypes and 3D-QSAR study has shown the importance of prototype 1 over other prototypes.


Assuntos
Desenho de Fármacos , Nitroimidazóis/síntese química , Nitroimidazóis/farmacologia , Relação Quantitativa Estrutura-Atividade , Infecções Sexualmente Transmissíveis/prevenção & controle , Trichomonas vaginalis/efeitos dos fármacos , Animais , Técnicas de Química Sintética , Resistência a Medicamentos/efeitos dos fármacos , Células HeLa , Humanos , Masculino , Metronidazol/farmacologia , Modelos Moleculares , Conformação Molecular , Nitroimidazóis/efeitos adversos , Nitroimidazóis/farmacocinética , Ratos , Segurança , Trichomonas vaginalis/fisiologia
15.
Bioorg Med Chem Lett ; 26(17): 4223-32, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27496212

RESUMO

The anti-cancer property of curcumin, an active component of turmeric, is limited due to its poor solubility, stability and bioavailability. To enhance its efficacy, we designed a novel series of twenty-four monocarbonyl curcumin analogue-1,2,3-triazole conjugates and evaluated their anti-cancer activity towards endocrine related cancers. The new compounds (17-40) were synthesized through CuAAC click reaction and SAR analysis carried out. Out of these all, compound 17 showed most significant anti-cancer activity against prostate cancer cells with IC50 values of 8.8µM and 9.5µM in PC-3 and DU-145 cells, respectively. Another compound 26 showed significant anti-cancer activity against breast cancer cells with IC50 of 6µM, 10µM and 6.4µM in MCF-7, MDA-MB-231 and 4T1 cells, respectively while maintaining low toxicity towards non-cancer originated cell line, HEK-293. Compounds 17 and 26 arrested cell cycle and induced mitochondria-mediated apoptosis in cancer cells. Further, both of these compounds significantly down-regulated cell proliferation marker (PCNA), inhibited activation of cell survival protein (Akt phosphorylation), upregulated pro-apoptotic protein (Bax) and down-regulated anti-apoptotic protein (Bcl-2) in their respective cell lines. In addition, in vitro stability, solubility and plasma binding studies of the compounds 17 and 26 showed them to be metabolically stable. Thus, this study identified two new curcumin monocarbonyl-1,2,3-triazole conjugate compounds with more potent activity than curcumin against breast and prostate cancers.


Assuntos
Antineoplásicos/síntese química , Curcumina/química , Triazóis/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Química Click , Regulação para Baixo/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Células HEK293 , Meia-Vida , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo
16.
Eur J Med Chem ; 115: 275-90, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27084496

RESUMO

Trichomoniasis and candidiasis are amongst the most common morbidity-causing reproductive tract infections, generally treated by Metronidazole and Fluconazole respectively. Poor vaginal efficacy, drug-resistance and non-spermicidal nature limit their use as topical microbicidal contraceptives. Bis(dialkylaminethiocarbonyl)disulfides (4-38) were designed as dually active, non-surfactant molecules capable of eliminating Trichomonas vaginalis and Candida strains as well as irreversibly immobilizing 100% human sperm instantly, at doses non-cytotoxic to human cervical epithelial cells and vaginal microflora in vitro. Compounds 12, 16, 17 were fifty times more active than nonoxynol-9, OTC vaginal spermicide, and compounds 12 and 17 have shown remarkable in vivo activity in rabbit model. Most promising compound 17 has shown promise for further development as a double-edged vaginal microbicide due to their improved activity and safety along with notable in vivo trichomonicidal activity. Role of disulfide group was established by loss of spermicidal activity on chemical modifications (39-56). These disulfides might be targeting thiol groups present over cell membrane of human sperm and Trichomonas as shown by fluorescence labeling of free thiols.


Assuntos
Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Dissulfetos/química , Espermicidas , Animais , Anti-Infecciosos/química , Candida/efeitos dos fármacos , Masculino , Camundongos , Coelhos , Espermatozoides/efeitos dos fármacos , Trichomonas vaginalis/efeitos dos fármacos
17.
Toxicol Appl Pharmacol ; 295: 12-25, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26851681

RESUMO

The drug, theophylline is frequently used as an additive to medications for people suffering from chronic obstructive pulmonary diseases (COPD). We studied the effect of theophylline in bone cells, skeleton and parameters related to systemic calcium homeostasis. Theophylline induced osteoblast apoptosis by increasing reactive oxygen species production that was caused by increased cAMP production. Bone marrow levels of theophylline were higher than its serum levels, indicating skeletal accumulation of this drug. When adult Sprague-Dawley rats were treated with theophylline, bone regeneration at fracture site was diminished compared with control. Theophylline treatment resulted in a time-dependent (at 4- and 8 weeks) bone loss. At 8 weeks, a significant loss of bone mass and deterioration of microarchitecture occurred and the severity was comparable to methylprednisone. Theophylline caused formation of hypomineralized osteoid and increased osteoclast number and surface. Serum bone resorption and formation marker were respectively higher and lower in the theophylline group compared with control. Bone strength was reduced by theophylline treatment. After 8 weeks, serum 25-D3 and liver 25-hydroxylases were decreased in theophylline group than control. Further, theophylline treatment reduced serum 1, 25-(OH)2 vitamin D3 (1,25-D3), and increased parathyroid hormone and fibroblast growth factor-23. Theophylline treated rats had normal serum calcium and phosphate but displayed calciuria and phosphaturia. Co-administration of 25-D3 with theophylline completely abrogated theophylline-induced osteopenia and alterations in calcium homeostasis. In addition, 1,25-D3 protected osteoblasts from theophylline-induced apoptosis and the attendant oxidative stress. We conclude that theophylline has detrimental effects in bone and prophylactic vitamin D supplementation to subjects taking theophylline could be osteoprotective.


Assuntos
Doenças Ósseas Metabólicas/induzido quimicamente , Osteoblastos/metabolismo , Teofilina/farmacologia , Vitamina D/farmacologia , Animais , Apoptose/efeitos dos fármacos , Biomarcadores , Medula Óssea/metabolismo , Regeneração Óssea/efeitos dos fármacos , Calcifediol/metabolismo , Técnicas de Cultura de Células , AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Feminino , Fraturas Ósseas/fisiopatologia , Masculino , Metilprednisolona/farmacologia , Hormônio Paratireóideo/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Teofilina/farmacocinética , Fatores de Tempo
18.
Int J Antimicrob Agents ; 47(1): 36-47, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26706422

RESUMO

Chemical attenuation of the reactive oxygen species (ROS)-sensitive anaerobes Trichomonas vaginalis, which is the most prevalent non-viral sexually transmitted infection, and two often coexisting vaginal infections, namely Candida albicans and Staphylococcus aureus, which are opportunistic reproductive tract infections, was attempted with novel ammonium salts of carbamodithioic acid through inhibition of free thiols. In vitro and in vivo efficacies of the designed compounds were evaluated as topical vaginal microbicides. Five compounds showed exceptional activity against drug-resistant and -susceptible strains with negligible toxicity to host (HeLa) cells in vitro in comparison with the standard vaginal microbicide nonoxynol-9 (N-9), without disturbing the normal vaginal flora (i.e. Lactobacillus). The compounds significantly inhibited the cytopathic effects of Trichomonas on HeLa cells in vitro with efficacies comparable with metronidazole (MTZ); however, their efficacy to rescue host cells from co-infection (protozoal and fungal) was greater than that of MTZ. The compounds inhibited ß-haemolysis of red blood cells caused by Trichomonas and were found to be active in vivo in the mouse subcutaneous abscess assay. Some compounds rapidly immobilized human sperm. A mechanism involving inhibition of free thiols and consequently the cysteine proteases of T. vaginalis by the new compounds has been proposed. Thus, a unique scaffold of antimicrobial agents has been discovered that warrants further investigation for development as contraceptive vaginal microbicides.


Assuntos
Anti-Infecciosos Locais/química , Anti-Infecciosos Locais/farmacologia , Candida/efeitos dos fármacos , Ditiocarb/análogos & derivados , Ditiocarb/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Trichomonas vaginalis/efeitos dos fármacos , Administração Intravaginal , Animais , Anti-Infecciosos Locais/administração & dosagem , Anti-Infecciosos Locais/efeitos adversos , Sobrevivência Celular/efeitos dos fármacos , Ditiocarb/administração & dosagem , Ditiocarb/efeitos adversos , Células Epiteliais/efeitos dos fármacos , Feminino , Células HeLa , Humanos , Lactobacillus/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana
19.
Mol Carcinog ; 55(11): 1843-1857, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26599461

RESUMO

Estrogen Receptor-ß (ER-ß), a tumor-suppressor in prostate cancer, is epigenetically repressed by hypermethylation of its promoter. DNA-methyltransferases (DNMTs), which catalyze the transfer of methyl-groups to CpG islands of gene promoters, are overactive in cancers and can be inhibited by DNMT-inhibitors to re-express the tumor suppressors. The FDA-approved nucleoside DNMT-inhibitors like 5-Azacytidine and 5-Aza-deoxycytidine carry notable concerns due to their off-target toxicity, therefore non-nucleoside DNMT inhibitors are desirable for prolonged epigenetic therapy. Disulfiram (DSF), an antabuse drug, inhibits DNMT and prevents proliferation of cells in prostate and other cancers, plausibly through the re-expression of tumor suppressors like ER-ß. To increase the DNMT-inhibitory activity of DSF, its chemical scaffold was optimized and compound-339 was discovered as a doubly potent DSF-derivative with similar off-target toxicity. It potently and selectively inhibited cell proliferation of prostate cancer (PC3/DU145) cells in comparison to normal (non-cancer) cells by promoting cell-cycle arrest and apoptosis, accompanied with inhibition of total DNMT activity, and re-expression of ER-ß (mRNA/protein). Bisulfite-sequencing of ER-ß promoter revealed that compound-339 demethylated CpG sites more efficaciously than DSF, restoring near-normal methylation status of ER-ß promoter. Compound-339 docked on to the MTase domain of DNMT1 with half the energy of DSF. In xenograft mice-model, the tumor volume regressed by 24% and 50% after treatment with DSF and compound-339, respectively, with increase in ER-ß expression. Apparently both compounds inhibit prostate cancer cell proliferation by re-expressing the epigenetically repressed tumor-suppressor ER-ß through inhibition of DNMT activity. Compound-339 presents a new lead for further study as an anti-prostate cancer agent. © 2015 Wiley Periodicals, Inc.


Assuntos
Dissulfiram/análogos & derivados , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/síntese química , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Simulação de Acoplamento Molecular , Regiões Promotoras Genéticas/efeitos dos fármacos , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
20.
ChemMedChem ; 10(10): 1739-53, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26337025

RESUMO

In an ongoing effort to discover an effective, topical, dual-function, non-surfactant contraceptive vaginal microbicide, a novel series of 2,2'-disulfanediylbis(3-(substituted-1-yl)propane-2,1-diyl) disubstituted-1-carbodithioates were designed by using a bioisosterism approach. Thirty-three compounds were synthesized, and interestingly, most demonstrated multiple activities: they were found to be spermicidal at a minimal effective concentration of 1-0.001 %, trichomonacidal against drug-susceptible and resistant Trichomonas strains at minimal inhibitory concentration (MIC) ranges of 10.81-377.64 and 10.81-754.14 µM, respectively, and fungicidal at MIC 7.93-86.50 µM. These compounds were also found to be non-cytotoxic to human cervical (HeLa) epithelial cells and vaginal microflora (Lactobacilli) in vitro. The most promising compound, 2,2'-disulfanediylbis(3-(pyrrolidin-1-yl)propane-2,1-diyl)dipyrrolidine-1-carbodithioate (5), exhibited spermicidal activity 15-fold higher than that of the marketed spermicide Nonoxynol-9 (N-9) and also demonstrated microbicidal potency. To identify common structural features required for spermicidal activity, a 3D-QSAR analysis was carried out, as well as in vivo efficacy studies and fluorescent labeling studies to determine the biological targets of compound 5.


Assuntos
Anti-Infecciosos/farmacologia , Anticoncepcionais/farmacologia , Dissulfetos/farmacologia , Ésteres/farmacologia , Tiocarbamatos/farmacologia , Trichomonas/efeitos dos fármacos , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anticoncepcionais/síntese química , Anticoncepcionais/química , Dissulfetos/química , Relação Dose-Resposta a Droga , Ésteres/química , Células HeLa , Humanos , Lactobacillus , Testes de Sensibilidade Microbiana , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Quantitativa Estrutura-Atividade , Tiocarbamatos/síntese química , Tiocarbamatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...