Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38751319

RESUMO

Dual-gasochromic supraparticles that undergo rapid eye-readable and gas-specific colour changes upon reaction with hydrogen or ammonia are reported. This functionality is achieved by tailoring the solid-liquid-gas interface within the mesoporous framework of supraparticles via spray-drying.

2.
Small ; : e2310813, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700050

RESUMO

The structure of supraparticles (SPs) is a key parameter for achieving advanced functionalities arising from the combination of different nanoparticle (NP) types in one hierarchical entity. However, whenever a droplet-assisted forced assembly approach is used, e.g., spray-drying, the achievable structure is limited by the inherent drying phenomena of the method. In particular, mixed NP dispersions of differently sized colloids are heavily affected by segregation during the assembly. Herein, the influence of the colloidal arrangement of Pt and SiO2 NPs within a single supraparticulate entity is investigated. A salt-based electrostatic manipulation approach of the utilized NPs is proposed to customize the structure of spray-dried Pt/SiO2 SPs. By this, size-dependent separation phenomena of NPs during solvent evaporation, that limit the catalytic performance in the reduction of 4-nitrophenol, are overcome by achieving even Pt NP distribution. Additionally, the textural properties (pore size and distribution) of the SiO2 pore framework are altered to improve the mass transfer within the material leading to increased catalytic activity. The suggested strategy demonstrates a powerful, material-independent, and universally applicable approach to deliberately customize the structure and functionality of multi-component SP systems. This opens up new ways of colloidal material combinations and structural designs in droplet-assisted forced assembly approaches like spray-drying.

3.
Water Res ; 255: 121525, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569358

RESUMO

This work introduces a new sustainable alternative of powdered activated carbon (PAC) - magnetically harvestable and reusable after regeneration via inductive heating - for the adsorptive removal of organic micropollutants (OMP) from secondary wastewater effluents. For this purpose, two commercial PACs - lignite "L" (1187 m2/g) and coconut "C"-based (1524 m2/g) - were modified with magnetic iron oxide following two different synthesis approaches: infiltration ("infiltr") and surface deposition ("depos") route. The resulting magnetic powdered activated carbons (mPAC) and their precursor PACs were fully characterized before application. The iron oxide content of the modified "L" and "C" samples was ∼30 % and ∼20 %, respectively. Iron oxide gives the PAC beneficial magnetic properties for easy magnetic separation and simultaneously acts as an inductively heatable agent for the carbon regeneration. The infiltrated samples displayed better inductive heating performance and regeneration than their deposited counterparts. Tests with real wastewater showed fast adsorption kinetics of the organic load following the pseudo-second-order kinetic model. Adsorption isotherms were compliant with the Freundlich isotherm model. Sample "L-infiltr" had the best overall adsorption performance throughout 5 reuse cycles when intermediately inductively regenerated (<3 % drop in organics removal per cycle with intermediate regeneration vs. ∼10 % drop per cycle without regeneration). The treated supernatant was additionally tested for 31 representative organic micropollutants and their transformation products (pharmaceuticals, personal care products, industrial chemicals, etc.), where 26 OMPs had consistently high removal (>85 %) throughout 5 cycles with intermediate regeneration and for 28 OMPs the total adsorption efficiency dropped by <5 % after 5 cycles.

4.
ACS Appl Mater Interfaces ; 16(8): 11104-11115, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38358915

RESUMO

Increased particulate matter (PM) concentrations in our ambient air are the cause of various life-threatening diseases and consequently need to be reduced to nonhazardous levels. The natural PM removal capabilities of leaves inspired the development of a low-cost coating technology that exploits natural weather phenomena for its PM catching and removal processes. The herein presented coating is based on microparticle-filled silicone with optimized chemical and physical surface properties. Its surface roughness was tuned using differently sized spray-dried particles, and its surface contact angle was adjusted through silicone tensides, polar ether groups incorporated in the silicon backbone, and the used amount of spray-dried particles. In such a way, optimized silicone coatings showed in laboratory experiments improved catching abilities (>300% relative to glass surfaces), a full retention of adsorbed PM during wind events, and the formation of large PM aggregates. Upon (simulated) rain events, these coatings were regenerated, and the content of harmful PM of various sizes dispersed in water was reduced between ∼73 and 100%. Furthermore, an outdoor test over 100 days showed the functioning of the coating under real-world conditions. These regenerative coatings are readily applicable on diverse surfaces and do not require any further technical infrastructure. Thus, they present an extension of the toolbox for PM reduction technologies.

5.
J Colloid Interface Sci ; 658: 199-208, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38100976

RESUMO

The structure and texture of supraparticles determine their properties and performance, thus playing a critical role in research studies as well as industrial applications. The addition of salts is a well-known strategy to manipulate the colloidal stability of nanoparticles. In this study, this approach is used to tune the structure of spray-dried supraparticles. Three different salts (NaCl, CaCl2, and AlCl3) were added to binary silica (SiO2) nanoparticle dispersions (of 40 and 400 nm in size) to change their colloidal stability by lowering the electrostatic repulsion or enhancing the cation bridging. Dependent on the cation valence of the added salt and the nanoparticle size, the critical salt concentration, which yields nanoparticle agglomeration, is reached at different salt amounts. This phenomenon is exploited to tune the final structure of supraparticles - obtained by spray-drying binary dispersions - from core-shell to Janus-like to well-mixed structures. This consequently also tunes textural properties, like surface roughness and the pore system of the obtained supraparticles. Our results provide insights for controlling the structure of spray-dried supraparticles by manipulating the stability of binary nanoparticle dispersions, and they establish a framework for composite particle design.

6.
Adv Mater ; 35(47): e2306648, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37840431

RESUMO

Spray-drying is a popular and well-known "drying tool" for engineers. This perspective highlights that, beyond this application, spray-drying is a very interesting and powerful tool for materials chemists to enable the design of multifunctional and hybrid materials. Upon spray-drying, the confined space of a liquid droplet is narrowed down, and its ingredients are forced together upon "falling dry." As  detailed in this article, this enables the following material formation strategies either individually or even in combination: nanoparticles and/or molecules can be assembled; precipitation reactions as well as chemical syntheses can be performed; and templated materials can be designed. Beyond this, fragile moieties can be processed, or "precursor materials" be prepared. Post-treatment of spray-dried objects eventually enables the next level in the design of complex materials. Using spray-drying to design (particulate) materials comes with many advantages-but also with many challenges-all of which are outlined here. It is believed that multifunctional, hybrid materials, made via spray-drying, enable very unique property combinations that are particularly highly promising in myriad applications-of which catalysis, diagnostics, purification, storage, and information are highlighted.

7.
Adv Mater ; 35(49): e2306728, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37786273

RESUMO

Materials are the fundament of the physical world, whereas information and its exchange are the centerpieces of the digital world. Their fruitful synergy offers countless opportunities for realizing desired digital transformation processes in the physical world of materials. Yet, to date, a perfect connection between these worlds is missing. From the perspective, this can be achieved by overcoming the paradigm of considering materials as passive objects and turning them into perceptual, information-providing matter. This matter is capable of communicating associated digitally stored information, for example, its origin, fate, and material type as well as its intactness on demand. Herein, the concept of realizing perceptual, information-providing matter by integrating customizable (sub-)micrometer-sized communicating supraparticles (CSPs) is presented. They are assembled from individual nanoparticulate and/or (macro)molecular building blocks with spectrally differentiable signals that are either robust or stimuli-susceptible. Their combination yields functional signal characteristics that provide an identification signature and one or multiple stimuli-recorder features. This enables CSPs to communicate associated digital information on the tagged material and its encountered stimuli histories upon signal readout anywhere across its life cycle. Ultimately, CSPs link the materials and digital worlds with numerous use cases thereof, in particular fostering the transition into an age of sustainability.

8.
Mater Horiz ; 10(11): 4960-4967, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37610262

RESUMO

A novel GaPt-based supported catalytically active liquid metal solution (SCALMS) material is developed by exploiting the suprabead concept: Supraparticles, i.e. micrometer-sized particles composed of nanoparticles assembled by spray-drying, are bonded to millimeter-sized beads. The suprabeads combine macroscale size with catalytic properties of nanoscale GaPt particles entrapped in their silica framework.

9.
Sci Rep ; 13(1): 11440, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454142

RESUMO

Robotic systems facilitate relatively simple human-robot interaction for non-robot experts, providing the flexibility to implement different processes. In this context, shorter process times, as well as an increased product and process quality could be achieved. Robots short time-consuming processes, take over ergonomically unfavorable tasks and work efficiently all the time. In addition, flexible production is possible while maintaining or even increasing safety. This study describes the successful development of a dual-arm robot-based modular infrastructure and the establishment of an automated process for the reproducible production of nanoparticles. As proof of concept, a manual synthesis protocol for silica nanoparticle preparation with a diameter of about 200 nm as building blocks for photonic crystals was translated into a fully automated process. All devices and components of the automated system were optimized and adapted according to the synthesis requirements. To demonstrate the benefit of the automated nanoparticle production, manual (synthesis done by lab technicians) and automated syntheses were benchmarked. To this end, different processing parameters (time of synthesis procedure, accuracy of dosage etc.) and the properties of the produced nanoparticles were compared. We demonstrate that the use of the robot not only increased the synthesis accuracy and reproducibility but reduced the personnel time and costs up to 75%.

10.
J Colloid Interface Sci ; 648: 633-643, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37321082

RESUMO

Most analytical techniques used to study the surface chemical properties of superparamagnetic iron oxide nanoparticles (SPIONs) are barely suitable for in situ investigations in liquids, where SPIONs are mostly applied for hyperthermia therapy, diagnostic biosensing, magnetic particle imaging or water purification. Magnetic particle spectroscopy (MPS) can resolve changes in magnetic interactions of SPIONs within seconds at ambient conditions. Herein, we show that by adding mono- and divalent cations to citric acid capped SPIONs, the degree of agglomeration can be utilized to study the selectivity of cations towards surface coordination motifs via MPS. A favored chelate agent, like ethylenediaminetetraacetic acid (EDTA) for divalent cations, removes cations from coordination sites on the SPION surface and causes redispersion of agglomerates. The magnetic determination thereof represents what we call a "magnetically indicated complexometric titration". The relevance of agglomerate sizes for the MPS signal response is studied on a model system of SPIONs and the surfactant cetrimonium bromide (CTAB). Analytical ultracentrifugation (AUC) and cryogenic transmission electron microscopy (cryo-TEM) reveal that large micron-sized agglomerates are required to significantly change the MPS signal response. With this work, a fast and easy-to-use characterization method to determine surface coordination motifs of magnetic nanoparticles in optically dense media is demonstrated.

11.
J Chem Phys ; 158(13): 134722, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37031150

RESUMO

The recent transition to H2-based energy storage demands reliable H2 sensors that allow for easy, fast, and reliable detection of leaks. Conventional H2 detectors are based on the changes of physical properties of H2 probes induced by subsurface H-atoms to a material such as electrical conductivity. Herein, we report on highly reactive gasochromic H2 detectors based on the adsorption of H2 on the material surface. We prepared supraparticles (SPs) containing different types of noble metal nanoparticles (NPs), silica NPs, and the dye resazurin by spray-drying and tested their performance for H2 detection. The material undergoes a distinct color change due to the hydrogenation of the purple resazurin to pink resorufin and, finally, colorless hydroresorufin. The stepwise transition is fast and visible to the naked eye. To further improve the performance of the sensor, we tested the reactivity of SPs with different catalytically active NPs by means of in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). We show that the choice of the NP catalyst has a pronounced effect on the response of the H2 indicator. In addition, we demonstrate that the performance depends on the size of the NPs. These effects are attributed to the availability of reactive H-atoms on the NP surface. Among the materials studied, Pt-containing SPs gave the best results for H2 detection.

12.
Chempluschem ; 88(2): e202200395, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36563109

RESUMO

Luminomagnetic composites have been synthesized that allow for an individual tuning of luminescence intensity, chromaticity and magnetization by combination of superparamagnetic, citrate-stabilized iron oxide nanoparticles with the luminescent MOFs 3 ∞ [Ln2 (BDC)3 (H2 O)4 ] (Ln=Eu, Tb; BDC2- =terephthalate). The components are arranged to a concept of inverse structuring compared to previous luminomagnetic composites with MOF@magnetic particle (shell@core) composition so that the luminescent MOF now acts as core and is covered by magnetic nanoparticles forming the satellite shell. Thereby, the magnetic and photophysical properties are individually tuneable between high emission intensity (1.2 ⋅ 106  cps mg-1 ) plus low saturation magnetization (6 emu g-1 ) and the direct opposite (0.09 ⋅ 106  cps mg-1 ; 42 emu g-1 ) by adjusting the particle coverage of the MOF. This is not achievable with a core-shell structure having a magnetic core and a dense MOF shell. The composition of the composites and the influence of different synthesis conditions on their properties were investigated by SEM/EDX, PXRD, magnetization measurements and photoluminescence spectroscopy.

13.
Small ; 18(48): e2203068, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36253136

RESUMO

Optical microscale shear-stress indicator particles are of interest for the in situ recording of localized forces, e.g., during 3D printing or smart skins in robotic applications. Recently developed particle systems are based on optical responses enabled by integrated organic dyes. They thus suffer from potential chemical instability and cross-sensitivities toward humidity or temperature. These drawbacks can be circumvented using photonic balls as shear-stress indicator particles, which employ structural color as the element to record forces. Here, such photonic balls are prepared from silica and iron oxide nanoparticles via the scalable and fast spray-drying technique. Process parameters to create photonic balls with a disordered core and an ordered particle structure toward the exterior of the supraparticles are reported. This hybrid disordered-ordered structure is responsible for a color loss of the indicator particles during shear-stress application because of irreversible structural destruction. By adjusting the primary silica particle sizes, nearly all colors of the visible spectrum can be achieved and the sensitivity of the response to shear stress can be adjusted.


Assuntos
Fótons , Dióxido de Silício , Dióxido de Silício/química , Tamanho da Partícula
14.
Adv Mater ; 34(31): e2202683, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35596261

RESUMO

Small-sized temperature indicator additives autonomously record temperature events via a gradual irreversible signal change. This permits, for instance, the indication of possible cold-chain breaches or failure of electronics but also curing of glues. Thus, information about the materials' thermal history can be obtained upon signal detection at every point of interest. In this work, maximum-temperature indicators with magnetic readout based on micrometer-sized supraparticles (SPs) are introduced. The magnetic signal transduction is, by nature, independent of the materials' optical properties. This facilitates the determination of valuable temperature information from the inside, that is, the bulk, even of dark and opaque macroscopic objects, which might differ from their surface. Compared to state-of-the-art optical temperature indicators, complementary magnetic readout characteristics ultimately expand their applicability. The conceptualized SPs are hierarchically structured assemblies of environmentally friendly, inexpensive iron oxide nanoparticles and thermoplastic polymer. Irreversible structural changes, induced by polymer softening, yield magnetic interaction changes within and between the hierarchic sub-structures, which are distinguishable and define the temperature indication mechanism. The fundamental understanding of the SPs' working principle enables customization of the particles' working range, response time, and sensitivity, using a toolbox-like manufacturing approach. The magnetic signal change is detected self-referenced, fast, and contactless.

15.
Nano Lett ; 22(7): 2762-2768, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35311292

RESUMO

Identifying and ensuring the integrity of products plays an important role in today's globalized world. Miniaturized information taggants in the packaging surface are therefore required to monitor the product itself instead of applying external labels. Ideally, multiple types of information are stored in such additives. In this work, micrometer-sized core-shell particles (supraparticles) were developed to provide material surfaces with both an identifier and a surface abrasion indication functionality. The core of the supraparticles contains iron oxide nanoparticles that allow identification of the surface with a spectral magnetic code resolved by magnetic particle spectroscopy. The fluorescent silica nanoparticles in the supraparticle shell can be abraded by mechanical stress and resolved by fluorescence spectroscopy. This provides information about the mechanical integrity of the system. The application as surfaces, that contain several types of information in one supraparticle, was demonstrated here by incorporating such bifunctional supraparticles as additives in a surface coating.


Assuntos
Nanopartículas , Dióxido de Silício , Magnetismo , Nanopartículas/química , Fenômenos Físicos , Dióxido de Silício/química , Propriedades de Superfície
16.
Small ; 18(15): e2107513, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35253355

RESUMO

Small scratches and abrasion cause damage to packaging coatings. Albeit often invisible to the human eye, such small defects in the coating may ultimately have a strong negative impact on the whole system. For instance, gases may penetrate the coating and consequently the package barrier, thus leading to the degradation of sensitive goods. Herein, the indicators of mechanical damage in the form of particles are reported, which can readily be integrated into coatings. Shear stress-induced damage is indicated by the particles via a color change. The particles are designed as core-shell supraparticles. The supraparticle core is based on rhodamine B dye-doped silica nanoparticles, whereas the shell is made of alumina nanoparticles. The alumina surface is functionalized with a monolayer of a perylene dye. The resulting core-shell supraparticle system thus contains two colors, one in the core and one in the shell part of the architecture. Mechanical damage of this structure exposes the core from the shell, resulting in a color change. With particles integrated into a coating lacquer, mechanical damage of a coating can be monitored via a color change and even be related to the degree of oxygen penetration in a damaged coating.


Assuntos
Nanopartículas , Dióxido de Silício , Óxido de Alumínio , Humanos , Nanopartículas/química , Dióxido de Silício/química
17.
Small ; 18(13): e2107511, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35146912

RESUMO

(Sub)micrometer-scaled identification (ID) taggants enable direct identification of arbitrary goods, thereby opening up application fields based on the possibility of tracking, tracing, and anti-counterfeiting. Due to their small dimensions, these taggants can equip in principle even the smallest subcomponents or raw materials with information. To achieve the demanded applicability, the mostly used optically encoded ID taggants must be further improved. Here, micrometer-scaled supraparticles with spectrally encoded luminescent and magnetically encoded signal characteristics are reported. They are produced in a readily customizable bottom-up fabrication procedure that enables precise adjustment of luminescent and magnetic properties on multiple hierarchy levels. The incorporation of commonly used magnetic nanoparticles and fluorescent dyes, respectively, into polymer nanocomposite particles, establishes a convenient toolbox of magnetic and luminescent building blocks. The subsequent assembly of selected building blocks in the desired ratios into supraparticles grants for all the flexibility to freely adjust both signal characteristics. The obtained spectrally resolved visible luminescent and invisible magnetic ID signatures are complementary in nature, thus expanding applicability and information security compared to recently reported optical- or magnetic-encoded taggants. Additionally, the introduced ID taggant supraparticles can significantly enhance the coding capacity. Therefore, the introduced supraparticles are considered as next-generation ID taggants.


Assuntos
Luminescência , Nanopartículas , Magnetismo , Fenômenos Físicos
18.
Small Methods ; 6(1): e2101296, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35041268

RESUMO

Spray-drying is a scalable process enabling one to assemble freely chosen nanoparticles into supraparticles. Atomic layer deposition (ALD) allows for controlled thin film deposition of a vast variety of materials including exotic ones that can hardly be synthesized by wet chemical methods. The properties of coated supraparticles are defined not only by the nanoparticle material chosen and the nanostructure adjusted during spray-drying but also by surface functionalities modified by ALD, if ALD is capable of modifying not only the outer surfaces but also surfaces buried inside the porous supraparticle. Simultaneously, surface accessibility in the porous supraparticles must be ensured to make use of all functionalized surfaces. In this work, iron oxide supraparticles are utilized as a model substrate as their magnetic properties enable the use of advanced magnetic characterization methods. Detailed information about the structural evolution upon individual ALD cycles of aluminium oxide, zinc oxide and titanium dioxide are thereby revealed and confirmed by gas sorption analyses. This demonstrates a powerful and versatile approach to freely designing the functionality of future materials by combination of spray-drying and ALD.

19.
Adv Mater Technol ; 6(6): 2100235, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34150991

RESUMO

Herein, a simple model setup is presented to spray fine liquid droplets containing nanoparticles in an air stream transporting this toward a filter material. The nanoparticles are made of silica and tagged with a fluorescent dye in order to render the trace of the particles easily visible. The silica nanoparticles, in a first approximation, mimic virus (severe acute respiratory syndrome coronavirus 2) particles. The setup is used to evaluate different tissues, nowadays, in times of the coronavirus pandemic, commonly used as facemasks, with regard to their particle retention capability. The setup enables adjusting different "breathing scenarios" by adjusting the gas flow speed and, thereby, to compare the filter performance for these scenarios. The effective penetration of particles can be monitored via fluorescence intensity measurements and is visualized via scanning electron micrographs and photographs under UV light. Ultimately, a strong increase of particle penetration in various mask materials as function of flow speed of the droplets is observed and an ultimate retention is only observed for FFP3 and FFP2 masks.

20.
Small ; 17(28): e2101588, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34085395

RESUMO

Communicating objects are demanded for product security and the concepts of a circular economy or the Internet of Nano Things. Smart additives in the form of particles can be the key to equip objects with the desired materials intelligence as their miniaturized size improves applicability and security. Beyond their proposed identification by optical signals, magnetic signals deriving from magnetic particles can hypothetically be used for identification but are to date only resolved roughly. Herein, a magnetic particle-based toolbox is reported, that provides more than 77 billion (77 × 109 ) different magnetic codes, adjustable in one single particle, that can be read out unambiguously, easily, and quickly. The key towards achieving the vast code variety is a hierarchical supraparticle design that is inspired by music: similarly to how the line-up variation of a musical ensemble yields distinguishable overtones, the variation of the supraparticle composition alters their magnetic overtones. By minimizing magnetic interactions, customizable signals are spectrally decoded by the simple method of magnetic particle spectroscopy. A large number of chemically adjustable magnetic codes and the possibility of their remote, contactless detection from within materials is a breakthrough for unexploited labeling applications and pave the way towards materials intelligence.


Assuntos
Fenômenos Magnéticos , Magnetismo , Fenômenos Físicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...