Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Alzheimer Res ; 12(9): 814-28, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26510979

RESUMO

A potential strategy to alleviate the aggregation of intrinsically disordered proteins (IDPs) is to maintain the native functional state of the protein by small molecule binding. However, the targeting of the native state of IDPs by small molecules has been challenging due to their heterogeneous conformational ensembles. To tackle this challenge, we applied a high-throughput chemical microarray surface plasmon resonance imaging screen to detect the binding between small molecules and monomeric full-length Tau, a protein linked with the onset of a range of Tauopathies. The screen identified a novel set of drug-like fragment and lead-like compounds that bound to Tau. We verified that the majority of these hit compounds reduced the aggregation of different Tau constructs in vitro and in N2a cells. These results demonstrate that Tau is a viable receptor of drug-like small molecules. The drug discovery approach that we present can be applied to other IDPs linked to other misfolding diseases such as Alzheimer's and Parkinson's diseases.


Assuntos
Fármacos Neuroprotetores/farmacologia , Tauopatias/tratamento farmacológico , Tauopatias/metabolismo , Proteínas tau/metabolismo , Animais , Benzotiazóis , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Corantes Fluorescentes , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Análise em Microsséries , Microscopia de Fluorescência , Estrutura Molecular , Fármacos Neuroprotetores/química , Agregados Proteicos/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Tiazóis , Proteínas tau/genética
2.
Front Mol Neurosci ; 7: 37, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24847206

RESUMO

PTEN-induced kinase 1 (PINK1) acts at multiple levels to promote mitochondrial health, including regulatory influence on ATP-synthesis, protein quality control, apoptosis, mitochondrial transport, and destiny. PINK1 mutations are linked to Parkinson disease (PD) and mostly result in loss of kinase activity. But the molecular events responsible for neuronal death as well as the physiological targets and regulators of PINK1 are still a matter of debate. This review highlights the recent progress evolving the cellular functions of the cytosolic pool of PINK1 in mitochondrial trafficking and neuronal differentiation. Regulation of PINK1 signaling occurs by mitochondrial processing to truncated forms of PINK1, differentially targeted to several subcellular compartments. The first identified activating kinase of PINK1 is MAP/microtubule affinity regulating kinase 2 (MARK2), which phosphorylates T313, a frequent mutation site linked to PD. Kinases of the MARK2 family perform diverse functions in neuronal polarity, transport, migration, and neurodegeneration such as Alzheimer disease (AD). This new protein kinase signaling axis might provide a link between neurodegenerative processes in AD and PD diseases and opens novel possibilities in targeting pathological signaling processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...