Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Biol ; 440(1): 22-30, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29727635

RESUMO

The Hippo signaling pathway has been implicated in control of cell and organ size, proliferation, and endothelial-mesenchymal transformation. This pathway impacts upon two partially redundant transcription cofactors, Yap and Taz, that interact with other factors, including members of the Tead family, to affect expression of downstream genes. Yap and Taz have been shown to regulate, in a cell-autonomous manner, myocardial proliferation, myocardial hypertrophy, regenerative potential, and overall size of the heart. Here, we show that Yap and Taz also play an instructive, non-cell-autonomous role in the endocardium of the developing heart to regulate myocardial growth through release of the paracrine factor, neuregulin. Without endocardial Yap and Taz, myocardial growth is impaired causing early post-natal lethality. Thus, the Hippo signaling pathway regulates cell size via both cell-autonomous and non-cell-autonomous mechanisms. Furthermore, these data suggest that Hippo may regulate organ size via a sensing and paracrine function in endothelial cells.


Assuntos
Coração/crescimento & desenvolvimento , Miocárdio/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Aciltransferases , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA/metabolismo , Endocárdio/crescimento & desenvolvimento , Endocárdio/metabolismo , Endocárdio/fisiologia , Fibroblastos , Coração/embriologia , Via de Sinalização Hippo , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Neuregulina-1/metabolismo , Organogênese , Fosfoproteínas/genética , Fosfoproteínas/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Proteínas de Sinalização YAP
2.
Cell ; 171(3): 573-587.e14, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-29033129

RESUMO

Progenitor cells differentiate into specialized cell types through coordinated expression of lineage-specific genes and modification of complex chromatin configurations. We demonstrate that a histone deacetylase (Hdac3) organizes heterochromatin at the nuclear lamina during cardiac progenitor lineage restriction. Specification of cardiomyocytes is associated with reorganization of peripheral heterochromatin, and independent of deacetylase activity, Hdac3 tethers peripheral heterochromatin containing lineage-relevant genes to the nuclear lamina. Deletion of Hdac3 in cardiac progenitor cells releases genomic regions from the nuclear periphery, leading to precocious cardiac gene expression and differentiation into cardiomyocytes; in contrast, restricting Hdac3 to the nuclear periphery rescues myogenesis in progenitors otherwise lacking Hdac3. Our results suggest that availability of genomic regions for activation by lineage-specific factors is regulated in part through dynamic chromatin-nuclear lamina interactions and that competence of a progenitor cell to respond to differentiation signals may depend upon coordinated movement of responding gene loci away from the nuclear periphery.


Assuntos
Cromatina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Histona Desacetilases/metabolismo , Lâmina Nuclear/metabolismo , Células-Tronco/citologia , Animais , Genoma , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Células-Tronco/metabolismo
3.
J Clin Invest ; 127(3): 899-911, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28165342

RESUMO

Ischemic heart disease resulting from myocardial infarction (MI) is the most prevalent form of heart disease in the United States. Post-MI cardiac remodeling is a multifaceted process that includes activation of fibroblasts and a complex immune response. T-regulatory cells (Tregs), a subset of CD4+ T cells, have been shown to suppress the innate and adaptive immune response and limit deleterious remodeling following myocardial injury. However, the mechanisms by which injured myocardium recruits suppressive immune cells remain largely unknown. Here, we have shown a role for Hippo signaling in the epicardium in suppressing the post-infarct inflammatory response through recruitment of Tregs. Mice deficient in epicardial YAP and TAZ, two core Hippo pathway effectors, developed profound post-MI pericardial inflammation and myocardial fibrosis, resulting in cardiomyopathy and death. Mutant mice exhibited fewer suppressive Tregs in the injured myocardium and decreased expression of the gene encoding IFN-γ, a known Treg inducer. Furthermore, controlled local delivery of IFN-γ following MI rescued Treg infiltration into the injured myocardium of YAP/TAZ mutants and decreased fibrosis. Collectively, these results suggest that epicardial Hippo signaling plays a key role in adaptive immune regulation during the post-MI recovery phase.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Tolerância Imunológica , Infarto do Miocárdio/imunologia , Pericárdio/imunologia , Fosfoproteínas/imunologia , Linfócitos T Reguladores/imunologia , Fatores de Transcrição/imunologia , Aciltransferases , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Cardiomiopatias/etiologia , Cardiomiopatias/genética , Cardiomiopatias/imunologia , Cardiomiopatias/patologia , Proteínas de Ciclo Celular , Fibrose , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Infarto do Miocárdio/complicações , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Pericárdio/patologia , Fosfoproteínas/genética , Linfócitos T Reguladores/patologia , Fatores de Transcrição/genética , Proteínas de Sinalização YAP
4.
Nat Commun ; 7: 12038, 2016 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-27356767

RESUMO

Organogenesis and regeneration require coordination of cellular proliferation, regulated in part by secreted growth factors and cognate receptors, with tissue nutrient supply provided by expansion and patterning of blood vessels. Here we reveal unexpected combinatorial integration of a growth factor co-receptor with a heterodimeric partner and ligand known to regulate angiogenesis and vascular patterning. We show that ErbB2, which can mediate epidermal growth factor (EGF) and neuregulin signalling in multiple tissues, is unexpectedly expressed by endothelial cells where it partners with neuropilin 1 (Nrp1) to form a functional receptor for the vascular guidance molecule semaphorin 3d (Sema3d). Loss of Sema3d leads to improper patterning of the coronary veins, a phenotype recapitulated by endothelial loss of ErbB2. These findings have implications for possible cardiovascular side-effects of anti-ErbB2 therapies commonly used for cancer, and provide an example of integration at the molecular level of pathways involved in tissue growth and vascular patterning.


Assuntos
Anomalias dos Vasos Coronários/genética , Vasos Coronários/embriologia , Células Endoteliais/metabolismo , Neuropilina-1/metabolismo , Receptor ErbB-2/metabolismo , Semaforinas/metabolismo , Animais , Anomalias dos Vasos Coronários/metabolismo , Camundongos , Morfogênese , Neovascularização Fisiológica , Receptor ErbB-2/genética
5.
Cell Rep ; 15(7): 1384-1393, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27160901

RESUMO

Formation of the coronary vasculature is a complex and precisely coordinated morphogenetic process that begins with the formation of epicardium. The epicardium gives rise to many components of the coronary vasculature, including fibroblasts, smooth muscle cells, and endothelium. Hippo signaling components have been implicated in cardiac development and regeneration. However, a role of Hippo signaling in the epicardium has not been explored. Employing a combination of genetic and pharmacological approaches, we demonstrate that inhibition of Hippo signaling mediators Yap and Taz leads to impaired epicardial epithelial-to-mesenchymal transition (EMT) and a reduction in epicardial cell proliferation and differentiation into coronary endothelial cells. We provide evidence that Yap and Taz control epicardial cell behavior, in part by regulating Tbx18 and Wt1 expression. Our findings show a role for Hippo signaling in epicardial cell proliferation, EMT, and cell fate specification during cardiac organogenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Vasos Coronários/embriologia , Vasos Coronários/metabolismo , Organogênese , Pericárdio/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Animais , Proteínas de Ciclo Celular , Diferenciação Celular , Movimento Celular , Proliferação de Células , Vasos Coronários/citologia , Perda do Embrião/metabolismo , Perda do Embrião/patologia , Desenvolvimento Embrionário , Células Endoteliais/citologia , Transição Epitelial-Mesenquimal , Deleção de Genes , Marcação de Genes , Proteínas de Fluorescência Verde/metabolismo , Via de Sinalização Hippo , Integrases/metabolismo , Camundongos Knockout , Pericárdio/citologia , Regiões Promotoras Genéticas/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Semaforinas/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Transativadores , Proteínas WT1 , Proteínas de Sinalização YAP
6.
Stem Cell Res ; 15(3): 522-529, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26451648

RESUMO

In the adult dentate gyrus (DG) and in the proliferative zone lining the lateral ventricle (LV-PZ), radial glia-like (RGL) cells are neural stem cells (NSCs) that generate granule neurons. A number of molecular markers including glial fibrillary acidic protein (GFAP), Sox2 and nestin, can identify quiescent NSCs in these two niches. However, to date, there is no marker that distinguishes NSC origin of DG versus LV-PZ. Hopx, an atypical homeodomain only protein, is expressed by adult stem cell populations including those in the intestine and hair follicle. Here, we show that Hopx is specifically expressed in RGL cells in the adult DG, and these cells give rise to granule neurons. Assessed by non-stereological quantitation, Hopx-null NSCs exhibit enhanced neurogenesis evident by an increased number of BrdU-positive cells and doublecortin (DCX)-positive neuroblasts. In contrast, Sox2-positive, quiescent NSCs are reduced in the DG of Hopx-null animals and Notch signaling is reduced, as evidenced by reduced expression of Notch targets Hes1 and Hey2, and a reduction of the number of cells expressing the cleaved, activated form of the Notch1 receptor, the Notch intracellular domain (NICD) in Hopx-null DG. Surprisingly, Hopx is not expressed in RGL cells of the adult LV-PZ, and Hopx-expressing cells do not give rise to interneurons of the olfactory bulb (OB). These findings establish that Hopx expression distinguishes NSCs of the DG from those of the LV-PZ, and suggest that Hopx potentially regulates hippocampal neurogenesis by modulating Notch signaling.


Assuntos
Giro Denteado/metabolismo , Hipocampo/metabolismo , Proteínas de Homeodomínio/metabolismo , Ventrículos Laterais/metabolismo , Células-Tronco Neurais/metabolismo , Animais , Diferenciação Celular , Proteína Duplacortina , Humanos , Camundongos
7.
Development ; 142(17): 2962-71, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26253400

RESUMO

Notch signaling has well-defined roles in the assembly of arterial walls and in the development of the endothelium and smooth muscle of the vasculature. Hippo signaling regulates cellular growth in many tissues, and contributes to regulation of organ size, in addition to other functions. Here, we show that the Notch and Hippo pathways converge to regulate smooth muscle differentiation of the neural crest, which is crucial for normal development of the aortic arch arteries and cranial vasculature during embryonic development. Neural crest-specific deletion of the Hippo effectors Yap and Taz produces neural crest precursors that migrate normally, but fail to produce vascular smooth muscle, and Notch target genes such as Jagged1 fail to activate normally. We show that Yap is normally recruited to a tissue-specific Jagged1 enhancer by directly interacting with the Notch intracellular domain (NICD). The Yap-NICD complex is recruited to chromatin by the DNA-binding protein Rbp-J in a Tead-independent fashion. Thus, Hippo signaling can modulate Notch signaling outputs, and components of the Hippo and Notch pathways physically interact. Convergence of Hippo and Notch pathways by the mechanisms described here might be relevant for the function of these signaling cascades in many tissues and in diseases such as cancer.


Assuntos
Diferenciação Celular , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Crista Neural/citologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Aciltransferases , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Aorta Torácica/metabolismo , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA/metabolismo , Deleção de Genes , Células HEK293 , Via de Sinalização Hippo , Humanos , Mesoderma/metabolismo , Camundongos , Músculo Liso/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Receptores Notch/química , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteínas de Sinalização YAP
8.
Science ; 348(6242): aaa6071, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26113728

RESUMO

Cardiac progenitor cells are multipotent and give rise to cardiac endothelium, smooth muscle, and cardiomyocytes. Here, we define and characterize the cardiomyoblast intermediate that is committed to the cardiomyocyte fate, and we characterize the niche signals that regulate commitment. Cardiomyoblasts express Hopx, which functions to coordinate local Bmp signals to inhibit the Wnt pathway, thus promoting cardiomyogenesis. Hopx integrates Bmp and Wnt signaling by physically interacting with activated Smads and repressing Wnt genes. The identification of the committed cardiomyoblast that retains proliferative potential will inform cardiac regenerative therapeutics. In addition, Bmp signals characterize adult stem cell niches in other tissues where Hopx-mediated inhibition of Wnt is likely to contribute to stem cell quiescence and to explain the role of Hopx as a tumor suppressor.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Proteínas de Homeodomínio/metabolismo , Mioblastos Cardíacos/metabolismo , Organogênese/genética , Proteínas Supressoras de Tumor/metabolismo , Via de Sinalização Wnt/genética , Sequência de Aminoácidos , Animais , Proteínas Morfogenéticas Ósseas/genética , Linhagem da Célula/genética , Expressão Gênica , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Mutantes , Dados de Sequência Molecular , Músculo Liso/citologia , Músculo Liso/metabolismo , Mioblastos Cardíacos/citologia , Nicho de Células-Tronco/genética , Nicho de Células-Tronco/fisiologia , Proteínas Supressoras de Tumor/genética
9.
Nat Commun ; 6: 6727, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25865356

RESUMO

The plasticity of differentiated cells in adult tissues undergoing repair is an area of intense research. Pulmonary alveolar type II cells produce surfactant and function as progenitors in the adult, demonstrating both self-renewal and differentiation into gas exchanging type I cells. In vivo, type I cells are thought to be terminally differentiated and their ability to give rise to alternate lineages has not been reported. Here we show that Hopx becomes restricted to type I cells during development. However, unexpectedly, lineage-labelled Hopx(+) cells both proliferate and generate type II cells during adult alveolar regrowth following partial pneumonectomy. In clonal 3D culture, single Hopx(+) type I cells generate organoids composed of type I and type II cells, a process modulated by TGFß signalling. These findings demonstrate unanticipated plasticity of type I cells and a bidirectional lineage relationship between distinct differentiated alveolar epithelial cell types in vivo and in single-cell culture.


Assuntos
Linhagem da Célula/fisiologia , Células Epiteliais/citologia , Proteínas de Homeodomínio/genética , Alvéolos Pulmonares/citologia , Regeneração/fisiologia , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células , Rastreamento de Células , Células Clonais , Cruzamentos Genéticos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pneumonectomia , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/metabolismo , Transdução de Sinais , Tamoxifeno/farmacologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
11.
Cell Rep ; 9(5): 1885-1895, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25466249

RESUMO

Loss of Pax3, a developmentally regulated transcription factor expressed in premigratory neural crest, results in severe developmental defects and embryonic lethality. Although Pax3 mutations produce profound phenotypes, the intrinsic transcriptional activation exhibited by Pax3 is surprisingly modest. We postulated the existence of transcriptional coactivators that function with Pax3 to mediate developmental functions. A high-throughput screen identified the Hippo effector proteins Taz and Yap65 as Pax3 coactivators. Synergistic coactivation of target genes by Pax3-Taz/Yap65 requires DNA binding by Pax3, is Tead independent, and is regulated by Hippo kinases Mst1 and Lats2. In vivo, Pax3 and Yap65 colocalize in the nucleus of neural crest progenitors in the dorsal neural tube. Neural crest deletion of Taz and Yap65 results in embryo-lethal neural crest defects and decreased expression of the Pax3 target gene, Mitf. These results suggest that Pax3 activity is regulated by the Hippo pathway and that Pax factors are Hippo effectors.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Melanócitos/metabolismo , Crista Neural/citologia , Fatores de Transcrição Box Pareados/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Genes Reporter , Células HEK293 , Via de Sinalização Hippo , Humanos , Luciferases/biossíntese , Luciferases/genética , Camundongos Transgênicos , Fator de Transcrição PAX3 , Fosforilação , Processamento de Proteína Pós-Traducional , Transporte Proteico , Ativação Transcricional
12.
Circulation ; 126(9): 1058-66, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22837163

RESUMO

BACKGROUND: Notch signaling has previously been shown to play an essential role in regulating cell fate decisions and differentiation during cardiogenesis in many systems including Drosophila, Xenopus, and mammals. We hypothesized that Notch may also be involved in directing the progressive lineage restriction of cardiomyocytes into specialized conduction cells. METHODS AND RESULTS: In hearts where Notch signaling is activated within the myocardium from early development onward, Notch promotes a conduction-like phenotype based on ectopic expression of conduction system-specific genes and cell autonomous changes in electrophysiology. With the use of an in vitro assay to activate Notch in newborn cardiomyocytes, we observed global changes in the transcriptome, and in action potential characteristics, consistent with reprogramming to a conduction-like phenotype. CONCLUSIONS: Notch can instruct the differentiation of chamber cardiac progenitors into specialized conduction-like cells. Plasticity remains in late-stage cardiomyocytes, which has potential implications for engineering of specialized cardiovascular tissues.


Assuntos
Nó Atrioventricular/citologia , Regulação da Expressão Gênica no Desenvolvimento , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Receptor Notch1/fisiologia , Potenciais de Ação , Adenoviridae/genética , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem da Célula , Contactina 2/biossíntese , Contactina 2/genética , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Camundongos , Miócitos Cardíacos/ultraestrutura , Canal de Sódio Disparado por Voltagem NAV1.5 , Plasticidade Neuronal , Técnicas de Patch-Clamp , Fenótipo , Ramos Subendocárdicos/citologia , Receptor Notch1/genética , Proteínas Recombinantes de Fusão/fisiologia , Transdução de Sinais/fisiologia , Canais de Sódio/biossíntese , Canais de Sódio/genética , Proteínas com Domínio T/biossíntese , Proteínas com Domínio T/genética , Fatores de Transcrição HES-1 , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
13.
Circ Res ; 110(7): 922-6, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22394517

RESUMO

RATIONALE: Islet1 (Isl1) has been proposed as a marker of cardiac progenitor cells derived from the second heart field and is utilized to identify and purify cardiac progenitors from murine and human specimens for ex vivo expansion. The use of Isl1 as a specific second heart field marker is dependent on its exclusion from other cardiac lineages such as neural crest. OBJECTIVE: Determine whether Isl1 is expressed by cardiac neural crest. METHODS AND RESULTS: We used an intersectional fate-mapping system using the RC::FrePe allele, which reports dual Flpe and Cre recombination. Combining Isl1(Cre/+), a SHF driver, and Wnt1::Flpe, a neural crest driver, with Rc::FrePe reveals that some Isl1 derivatives in the cardiac outflow tract derive from Wnt1-expressing neural crest progenitors. In contrast, no overlap was observed between Wnt1-derived neural crest and an alternative second heart field driver, Mef2c-AHF-Cre. CONCLUSIONS: Isl1 is not restricted to second heart field progenitors in the developing heart but also labels cardiac neural crest. The intersection of Isl1 and Wnt1 lineages within the heart provides a caveat to using Isl1 as an exclusive second heart field cardiac progenitor marker and suggests that some Isl1-expressing progenitor cells derived from embryos, embryonic stem cultures, or induced pluripotent stem cultures may be of neural crest lineage.


Assuntos
Linhagem da Célula , Coração/embriologia , Proteínas com Homeodomínio LIM/metabolismo , Miocárdio/metabolismo , Crista Neural/embriologia , Fatores de Transcrição/metabolismo , Animais , Biomarcadores , Proteínas de Fluorescência Verde/genética , Proteínas com Homeodomínio LIM/genética , Camundongos , Camundongos Transgênicos , Modelos Animais , Miocárdio/citologia , Crista Neural/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Transcrição/genética , Proteína Wnt1/genética , Proteína Wnt1/metabolismo
14.
Circulation ; 125(2): 314-23, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22147907

RESUMO

BACKGROUND: Notch signaling in vascular smooth muscle precursors is required for smooth muscle differentiation. Jagged1 expression on endothelium activates Notch in vascular smooth muscle precursors including those of neural crest origin to initiate the formation of a smooth muscle layer in a maturing blood vessel. METHODS AND RESULTS: Here, we show that Jagged1 is a direct Notch target in smooth muscle, resulting in a positive feedback loop and lateral induction that propagates a wave of smooth muscle differentiation during aortic arch artery development. In vivo, we show that Notch inhibition in cardiac neural crest impairs Jagged1 messenger RNA expression and results in deficient smooth muscle differentiation and resultant aortic arch artery defects. Ex vivo, Jagged1 ligand activates Notch in neural crest explants and results in activation of Jagged1 messenger RNA, a response that is blocked by Notch inhibition. We examine 15 evolutionary conserved regions within the Jagged1 genomic locus and identify a single Notch response element within the second intron. This element contains a functional Rbp-J binding site demonstrated by luciferase reporter and chromatin immunoprecipitation assays and is sufficient to recapitulate aortic arch artery expression of Jagged1 in transgenic mice. Loss of Jagged1 in neural crest impairs vascular smooth muscle differentiation and results in aortic arch artery defects. CONCLUSIONS: Taken together, these results provide a mechanism for lateral induction that allows for a multilayered smooth muscle wall to form around a nascent arterial endothelial tube and identify Jagged1 as a direct Notch target.


Assuntos
Artérias/crescimento & desenvolvimento , Proteínas de Ligação ao Cálcio/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Músculo Liso Vascular/crescimento & desenvolvimento , Receptores Notch/metabolismo , Animais , Aorta Torácica , Proteínas de Ligação ao Cálcio/genética , Diferenciação Celular , Sequência Conservada , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteína Jagged-1 , Proteínas de Membrana/genética , Camundongos , Músculo Liso Vascular/metabolismo , Crista Neural/citologia , RNA Mensageiro , Proteínas Serrate-Jagged
15.
J Clin Invest ; 121(2): 525-33, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21266778

RESUMO

Ventricular preexcitation, which characterizes Wolff-Parkinson-White syndrome, is caused by the presence of accessory pathways that can rapidly conduct electrical impulses from atria to ventricles, without the intrinsic delay characteristic of the atrioventricular (AV) node. Preexcitation is associated with an increased risk of tachyarrhythmia, palpitations, syncope, and sudden death. Although the pathology and electrophysiology of preexcitation syndromes are well characterized, the developmental mechanisms are poorly understood, and few animal models that faithfully recapitulate the human disorder have been described. Here we show that activation of Notch signaling in the developing myocardium of mice can produce fully penetrant accessory pathways and ventricular preexcitation. Conversely, inhibition of Notch signaling in the developing myocardium resulted in a hypoplastic AV node, with specific loss of slow-conducting cells expressing connexin-30.2 (Cx30.2) and a resulting loss of physiologic AV conduction delay. Taken together, our results suggest that Notch regulates the functional maturation of AV canal embryonic myocardium during the development of the specialized conduction system. Our results also show that ventricular preexcitation can arise from inappropriate patterning of the AV canal-derived myocardium.


Assuntos
Feixe Acessório Atrioventricular , Nó Atrioventricular , Sistema de Condução Cardíaco , Receptores Notch/antagonistas & inibidores , Transdução de Sinais/fisiologia , Síndrome de Wolff-Parkinson-White , Feixe Acessório Atrioventricular/embriologia , Feixe Acessório Atrioventricular/patologia , Feixe Acessório Atrioventricular/fisiopatologia , Animais , Nó Atrioventricular/anatomia & histologia , Nó Atrioventricular/embriologia , Nó Atrioventricular/fisiopatologia , Ecocardiografia , Eletrocardiografia , Sistema de Condução Cardíaco/embriologia , Sistema de Condução Cardíaco/patologia , Sistema de Condução Cardíaco/fisiopatologia , Humanos , Camundongos , Receptores Notch/genética , Receptores Notch/metabolismo , Síndrome de Wolff-Parkinson-White/patologia , Síndrome de Wolff-Parkinson-White/fisiopatologia
16.
J Clin Invest ; 121(1): 422-30, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21157040

RESUMO

Congenital anomalies of the aortic valve are common and are associated with progressive valvular insufficiency and/or stenosis. In addition, aneurysm, coarctation, and dissection of the ascending aorta and aortic arch are often associated conditions that complicate patient management and increase morbidity and mortality. These associated aortopathies are commonly attributed to turbulent hemodynamic flow through the malformed valve leading to focal defects in the vessel wall. However, numerous surgical and pathological studies have identified widespread cystic medial necrosis and smooth muscle apoptosis throughout the aortic arch in affected patients. Here, we provide experimental evidence for an alternative model to explain the association of aortic vessel and valvular disease. Using mice with primary and secondary cardiac neural crest deficiencies, we have shown that neural crest contribution to the outflow endocardial cushions (the precursors of the semilunar valves) is required for late gestation valvular remodeling, mesenchymal apoptosis, and proper valve architecture. Neural crest was also shown to contribute to the smooth muscle layer of the wall of the ascending aorta and aortic arch. Hence, defects of cardiac neural crest can result in functionally abnormal semilunar valves and concomitant aortic arch artery abnormalities.


Assuntos
Valva Aórtica/embriologia , Crista Neural/embriologia , Animais , Valva Aórtica/anormalidades , Valva Aórtica/fisiopatologia , Apoptose , Comunicação Atrioventricular/embriologia , Comunicação Atrioventricular/fisiopatologia , Feminino , Humanos , Camundongos , Camundongos Mutantes , Modelos Cardiovasculares , Crista Neural/anormalidades , Crista Neural/fisiopatologia , Fator de Transcrição PAX3 , Fatores de Transcrição Box Pareados/deficiência , Fatores de Transcrição Box Pareados/genética , Gravidez , Receptores Notch/genética , Receptores Notch/fisiologia , Transdução de Sinais
17.
J Gen Physiol ; 134(3): 207-17, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19687231

RESUMO

Modulation of voltage-gated potassium (KV) channels by the KCNE family of single transmembrane proteins has physiological and pathophysiological importance. All five KCNE proteins (KCNE1-KCNE5) have been demonstrated to modulate heterologously expressed KCNQ1 (KV7.1) with diverse effects, making this channel a valuable experimental platform for elucidating structure-function relationships and mechanistic differences among members of this intriguing group of accessory subunits. Here, we specifically investigated the determinants of KCNQ1 inhibition by KCNE4, the least well-studied KCNE protein. In CHO-K1 cells, KCNQ1, but not KCNQ4, is strongly inhibited by coexpression with KCNE4. By studying KCNQ1-KCNQ4 chimeras, we identified two adjacent residues (K326 and T327) within the extracellular end of the KCNQ1 S6 segment that determine inhibition of KCNQ1 by KCNE4. This dipeptide motif is distinct from neighboring S6 sequences that enable modulation by KCNE1 and KCNE3. Conversely, S6 mutations (S338C and F340C) that alter KCNE1 and KCNE3 effects on KCNQ1 do not abrogate KCNE4 inhibition. Further, KCNQ1-KCNQ4 chimeras that exhibited resistance to the inhibitory effects of KCNE4 still interact biochemically with this protein, implying that accessory subunit binding alone is not sufficient for channel modulation. These observations indicate that the diverse functional effects observed for KCNE proteins depend, in part, on structures intrinsic to the pore-forming subunit, and that distinct S6 subdomains determine KCNQ1 responses to KCNE1, KCNE3, and KCNE4.


Assuntos
Canal de Potássio KCNQ1/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Células CHO , Cricetinae , Cricetulus , Dipeptídeos/metabolismo , Canal de Potássio KCNQ1/antagonistas & inibidores , Canal de Potássio KCNQ1/química , Dados de Sequência Molecular , Estrutura Terciária de Proteína
18.
J Physiol ; 587(2): 303-14, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19029186

RESUMO

Voltage-gated potassium (Kv) channels are modulated in distinct ways by members of the KCNE family of single transmembrane domain accessory subunits. KCNE4 has a dramatic inhibitory effect on KCNQ1 that differs substantially from the activating effects of KCNE1 and KCNE3. The structural features of KCNE4 that enable this behaviour are unknown. We exploited chimeras of KCNE1, KCNE3 and KCNE4 to identify specific domains responsible for the inhibitory effects on heterologously expressed KCNQ1. Previous structure-function analysis of KCNE1 and KCNE3 identified a critical tripeptide motif within the transmembrane domain that accounts for the differences in KCNQ1 modulation evoked by these two KCNE proteins. Swapping the transmembrane tripeptide motif of KCNE4 with the corresponding amino acid sequence of KCNE1 did not influence the behaviour of either protein. Similarly, exchanging the tripeptide regions of KCNE3 and KCNE4 further demonstrated that this transmembrane motif does not explain the activity of KCNE4. Using a more systematic approach, we demonstrated that the KCNE4 C-terminus was critical for KCNQ1 modulation. Replacement of the KCNE1 or KCNE3 C-termini with that of KCNE4 created chimeric proteins that strongly inhibited KCNQ1. Additional evidence supported a cooperative role of the KCNE4 transmembrane domain. Although the C-terminus was necessary for KCNE4 activity, we demonstrated that a surrogate transmembrane domain derived from the cytokine receptor CD8 did not enable inhibition of KCNQ1, indicating that the KCNE4 C-terminus alone was not sufficient for KCNQ1 modulation. We further demonstrated that the KCNE4 C-terminus interacts with KCNQ1. Our data reveal important structure-function relationships for KCNE4 that help advance our understanding of potassium channel modulation by KCNE proteins.


Assuntos
Ativação do Canal Iônico/fisiologia , Canal de Potássio KCNQ1/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Proteínas Recombinantes de Fusão/fisiologia , Animais , Antígenos CD8/genética , Antígenos CD8/metabolismo , Células CHO , Cricetinae , Cricetulus , Humanos , Imunoprecipitação , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Mutagênese Sítio-Dirigida , Técnicas de Patch-Clamp , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Ligação Proteica/fisiologia , Domínios e Motivos de Interação entre Proteínas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transfecção
19.
FEBS J ; 275(6): 1336-49, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18279388

RESUMO

Voltage-gated potassium (K(V)) channels can form heteromultimeric complexes with a variety of accessory subunits, including KCNE proteins. Heterologous expression studies have demonstrated diverse functional effects of KCNE subunits on several K(V) channels, including KCNQ1 (K(V)7.1) that, together with KCNE1, generates the slow-delayed rectifier current (I(Ks)) important for cardiac repolarization. In particular, KCNE4 exerts a strong inhibitory effect on KCNQ1 and other K(V) channels, raising the possibility that this accessory subunit is an important potassium current modulator. A polyclonal KCNE4 antibody was developed to determine the human tissue expression pattern and to investigate the biochemical associations of this protein with KCNQ1. We found that KCNE4 is widely and variably expressed in several human tissues, with greatest abundance in brain, liver and testis. In heterologous expression experiments, immunoprecipitation followed by immunoblotting was used to establish that KCNE4 directly associates with KCNQ1, and can co-associate together with KCNE1 in the same KCNQ1 complex to form a 'triple subunit' complex (KCNE1-KCNQ1-KCNE4). We also used cell surface biotinylation to demonstrate that KCNE4 does not impair plasma membrane expression of either KCNQ1 or the triple subunit complex, indicating that biophysical mechanisms probably underlie the inhibitory effects of KCNE4. The observation that multiple KCNE proteins can co-associate with and modulate KCNQ1 channels to produce biochemically diverse channel complexes has important implications for understanding K(V) channel regulation in human physiology.


Assuntos
Canal de Potássio KCNQ1/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Animais , Anticorpos/imunologia , Membrana Celular/metabolismo , Humanos , Imunoprecipitação , Canal de Potássio KCNQ1/análise , Canal de Potássio KCNQ1/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/análise , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Subunidades Proteicas/metabolismo , Transporte Proteico , Coelhos , Distribuição Tecidual
20.
J Mol Cell Cardiol ; 38(2): 277-87, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15698834

RESUMO

Voltage-gated potassium (K(V)) channels are modulated by at least three distinct classes of proteins including the KCNE family of single transmembrane accessory subunits. In the human genome, KCNE proteins are encoded by five genes designated KCNE1 through KCNE5. KCNE1 associates with KCNQ1 in vitro to generate a potassium current closely resembling the slowly activating delayed rectifier (I(Ks)). Other KCNE proteins also affect the activity of heterologously expressed KCNQ1. To investigate the potential physiological relevance of this gene family in human heart, we examined the relative expression of KCNQ1 and all five KCNE genes in samples derived from normal tissues representing major regions of human heart by real-time, quantitative RT-PCR. KCNE genes are expressed in human heart with a relative abundance ranking of KCNE1 > KCNE4 > KCNE5 approximately KCNE3 >> KCNE2. In situ hybridization revealed prominent expression of KCNE1 and KCNE3-5 in human atrial myocytes. In cardiomyopathic hearts, expression of KCNE1, KCNE3, KCNE4, and KCNQ1 was significantly increased, while KCNE2 and KCNE5 exhibited reduced expression. In a cell line stably expressing KCNQ1 and KCNE1, transient expression of KCNE3, KCNE4, or KCNE5 significantly altered I(Ks) current profiles. Even in the presence of additional KCNE1, KCNE4 and KCNE5 exert dominant effects on I(Ks). Although KCNE1 is the predominant KCNE family member expressed in human heart, the abundance of other KCNE transcripts including potential KCNQ1 suppressors (KCNE4 and KCNE5) and their altered expression patterns in disease lead us to speculate that a balance of KCNE accessory subunits may be important for cardiac K(V) channel function.


Assuntos
Regulação da Expressão Gênica , Miocárdio/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Potássio/metabolismo , Adulto , Idoso , Animais , Células CHO , Cardiomiopatias/genética , Cardiomiopatias/patologia , Cricetinae , Eletrofisiologia , Humanos , Hibridização In Situ , Transporte de Íons , Masculino , Pessoa de Meia-Idade , Miocárdio/patologia , Técnicas de Patch-Clamp , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...