Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Physiol ; : e31366, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958520

RESUMO

Autophagy is a lysosome-mediated self-degradation process of central importance for cellular quality control. It also provides macromolecule building blocks and substrates for energy metabolism during nutrient or energy deficiency, which are the main stimuli for autophagy induction. However, like most biological processes, autophagy itself requires ATP, and there is an energy threshold for its initiation and execution. We here present the first comprehensive review of this often-overlooked aspect of autophagy research. The studies in which ATP deficiency suppressed autophagy in vitro and in vivo were classified according to the energy pathway involved (oxidative phosphorylation or glycolysis). A mechanistic insight was provided by pinpointing the critical ATP-consuming autophagic events, including transcription/translation/interaction of autophagy-related molecules, autophagosome formation/elongation, autophagosome fusion with the lysosome, and lysosome acidification. The significance of energy-dependent fine-tuning of autophagic response for preserving the cell homeostasis, and potential implications for the therapy of cancer, autoimmunity, metabolic disorders, and neurodegeneration are discussed.

2.
Cells ; 12(9)2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37174682

RESUMO

As autophagy can promote or inhibit inflammation, we examined autophagy-inflammation interplay in COVID-19. Autophagy markers in the blood of 19 control subjects and 26 COVID-19 patients at hospital admission and one week later were measured by ELISA, while cytokine levels were examined by flow cytometric bead immunoassay. The antiviral IFN-α and proinflammatory TNF, IL-6, IL-8, IL-17, IL-33, and IFN-γ were elevated in COVID-19 patients at both time points, while IL-10 and IL-1ß were increased at admission and one week later, respectively. Autophagy markers LC3 and ATG5 were unaltered in COVID-19. In contrast, the concentration of autophagic cargo receptor p62 was significantly lower and positively correlated with TNF, IL-10, IL-17, and IL-33 at hospital admission, returning to normal levels after one week. The expression of SARS-CoV-2 proteins NSP5 or ORF3a in THP-1 monocytes caused an autophagy-independent decrease or autophagy-inhibition-dependent increase, respectively, of intracellular/secreted p62, as confirmed by immunoblot/ELISA. This was associated with an NSP5-mediated decrease in TNF/IL-10 mRNA and an ORF3a-mediated increase in TNF/IL-1ß/IL-6/IL-10/IL-33 mRNA levels. A genetic knockdown of p62 mimicked the immunosuppressive effect of NSP5, and a p62 increase in autophagy-deficient cells mirrored the immunostimulatory action of ORF3a. In conclusion, the proinflammatory autophagy receptor p62 is reduced inacute COVID-19, and the balance between autophagy-independent decrease and autophagy blockade-dependent increase of p62 levels could affect SARS-CoV-induced inflammation.


Assuntos
COVID-19 , Inflamação , Humanos , Autofagia , COVID-19/patologia , Inflamação/metabolismo , Interleucina-10/sangue , Interleucina-17/sangue , Interleucina-33/sangue , Interleucina-6/sangue , RNA Mensageiro , SARS-CoV-2
3.
Cells ; 11(18)2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36139470

RESUMO

AMP-activated protein kinase (AMPK) is an intracellular energy sensor that regulates metabolic and immune functions mainly through the inhibition of the mechanistic target of rapamycin (mTOR)-dependent anabolic pathways and the activation of catabolic processes such as autophagy. The AMPK/mTOR signaling pathway and autophagy markers were analyzed by immunoblotting in blood mononuclear cells of 20 healthy control subjects and 23 patients with an acute demyelinating form of Guillain-Barré syndrome (GBS). The activation of the liver kinase B1 (LKB1)/AMPK/Raptor signaling axis was significantly reduced in GBS compared to control subjects. In contrast, the phosphorylated forms of mTOR activator AKT and mTOR substrate 4EBP1, as well as the levels of autophagy markers LC3-II, beclin-1, ATG5, p62/sequestosome 1, and NBR1 were similar between the two groups. The downregulation of LKB1/AMPK signaling, but not the activation status of the AKT/mTOR/4EBP1 pathway or the levels of autophagy markers, correlated with higher clinical activity and worse outcomes of GBS. A retrospective study in a diabetic cohort of GBS patients demonstrated that treatment with AMPK activator metformin was associated with milder GBS compared to insulin/sulphonylurea therapy. In conclusion, the impairment of the LKB1/AMPK pathway might contribute to the development/progression of GBS, thus representing a potential therapeutic target in this immune-mediated peripheral polyneuropathy.


Assuntos
Síndrome de Guillain-Barré , Insulinas , Metformina , Proteínas Quinases Ativadas por AMP/metabolismo , Proteína Beclina-1/metabolismo , Regulação para Baixo , Humanos , Insulinas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estudos Retrospectivos , Transdução de Sinais , Sirolimo , Serina-Treonina Quinases TOR/metabolismo
4.
Life Sci ; 297: 120481, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35304128

RESUMO

We investigated the mechanisms and the role of autophagy in the differentiation of HL-60 human acute myeloid leukemia cells induced by protein kinase C (PKC) activator phorbol myristate acetate (PMA). PMA-triggered differentiation of HL-60 cells into macrophage-like cells was confirmed by cell-cycle arrest accompanied by elevated expression of macrophage markers CD11b, CD13, CD14, CD45, EGR1, CSF1R, and IL-8. The induction of autophagy was demonstrated by the increase in intracellular acidification, accumulation/punctuation of autophagosome marker LC3-II, and the increase in autophagic flux. PMA also increased nuclear translocation of autophagy transcription factors TFEB, FOXO1, and FOXO3, as well as the expression of several autophagy-related (ATG) genes in HL-60 cells. PMA failed to activate autophagy inducer AMP-activated protein kinase (AMPK) and inhibit autophagy suppressor mechanistic target of rapamycin complex 1 (mTORC1). On the other hand, it readily stimulated the phosphorylation of mitogen-activated protein (MAP) kinases extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) via a protein kinase C-dependent mechanism. Pharmacological or genetic inhibition of ERK or JNK suppressed PMA-triggered nuclear translocation of TFEB and FOXO1/3, ATG expression, dissociation of pro-autophagic beclin-1 from its inhibitor BCL2, autophagy induction, and differentiation of HL-60 cells into macrophage-like cells. Pharmacological or genetic inhibition of autophagy also blocked PMA-induced macrophage differentiation of HL-60 cells. Therefore, MAP kinases ERK and JNK control PMA-induced macrophage differentiation of HL-60 leukemia cells through AMPK/mTORC1-independent, TFEB/FOXO-mediated transcriptional and beclin-1-dependent post-translational activation of autophagy.


Assuntos
Leucemia , Autofagia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HL-60 , Humanos , Macrófagos/metabolismo , Acetato de Tetradecanoilforbol/metabolismo , Acetato de Tetradecanoilforbol/farmacologia
5.
Eur J Pharmacol ; 863: 172677, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31542478

RESUMO

We investigated the interplay between the intracellular energy sensor AMP-activated protein kinase (AMPK), prosurvival kinase Akt, oxidative stress, and autophagy in the cytotoxicity of parkinsonian neurotoxin 1-methyl-4-phenyl piridinium (MPP+) towards SH-SY5Y human neuroblastoma cells. MPP+-mediated oxidative stress, mitochondrial depolarization, and apoptotic cell death were associated with rapid (within 2 h) activation of AMPK, its target Raptor, and prosurvival kinase Akt. Antioxidants N-acetylcysteine and butylated hydroxyanisole suppressed MPP+-induced cytotoxicity, AMPK, and Akt activation. A genetic or pharmacological inhibition of AMPK increased MPP+-triggered production of reactive oxygen species and cell death, and diminished Akt phosphorylation, while AMPK activation protected SH-SY5Y cells from MPP+. On the other hand, genetic or pharmacological inactivation of Akt stimulated MPP+-triggered oxidative stress and neurotoxicity, but did not affect AMPK activation. At later time-points (16-24 h), MPP+ inhibited the main autophagy repressor mammalian target of rapamycin, which coincided with the increase in the levels of autophagy marker microtubule-associated protein 1 light-chain 3B. MPP+ also increased the concentration of a selective autophagic target sequestosome-1/p62 and reduced the levels of lysosomal-associated membrane protein 1 and cytoplasmic acidification, suggesting that MPP+-induced autophagy was coupled with a decrease in autophagic flux. Nevertheless, further pharmacological inhibition of autophagy sensitized SH-SY5Y cells to MPP+-induced death. Antioxidants and AMPK knockdown reduced, whereas genetic inactivation of Akt potentiated neurotoxin-triggered autophagy. These results suggest that MPP+-induced oxidative stress stimulates AMPK, which protects SH-SY5Y cells through early activation of antioxidative Akt and late induction of cytoprotective autophagy.


Assuntos
1-Metil-4-fenilpiridínio/toxicidade , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
6.
Int J Biochem Cell Biol ; 83: 84-96, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27988363

RESUMO

We investigated the role of the intracellular energy-sensing AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway in the in vitro antiglioma effect of the cyclooxygenase (COX) inhibitor indomethacin. Indomethacin was more potent than COX inhibitors diclofenac, naproxen, and ketoprofen in reducing the viability of U251 human glioma cells. Antiglioma effect of the drug was associated with p21 increase and G2M cell cycle arrest, as well as with oxidative stress, mitochondrial depolarization, caspase activation, and the induction of apoptosis. Indomethacin increased the phosphorylation of AMPK and its targets Raptor and acetyl-CoA carboxylase (ACC), and reduced the phosphorylation of mTOR and mTOR complex 1 (mTORC1) substrates p70S6 kinase and PRAS40 (Ser183). AMPK knockdown by RNA interference, as well as the treatment with the mTORC1 activator leucine, prevented indomethacin-mediated mTORC1 inhibition and cytotoxic action, while AMPK activators metformin and AICAR mimicked the effects of the drug. AMPK activation by indomethacin correlated with intracellular ATP depletion and increase in AMP/ATP ratio, and was apparently independent of COX inhibition or the increase in intracellular calcium. Finally, the toxicity of indomethacin towards primary human glioma cells was associated with the activation of AMPK/Raptor/ACC and subsequent suppression of mTORC1/S6K. By demonstrating the involvement of AMPK/mTORC1 pathway in the antiglioma action of indomethacin, our results support its further exploration in glioma therapy.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Glioma/tratamento farmacológico , Glioma/metabolismo , Indometacina/farmacologia , Complexos Multiproteicos/antagonistas & inibidores , Serina-Treonina Quinases TOR/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/genética , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase/farmacologia , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioma/patologia , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Modelos Biológicos , Complexos Multiproteicos/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
7.
J Biol Chem ; 291(44): 22936-22948, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27587392

RESUMO

We investigated the in vitro and in vivo anticancer effect of combining lysosomal membrane permeabilization (LMP)-inducing agent N-dodecylimidazole (NDI) with glycolytic inhibitor 2-deoxy-d-glucose (2DG). NDI-triggered LMP and 2DG-mediated glycolysis block synergized in inducing rapid ATP depletion, mitochondrial damage, and reactive oxygen species production, eventually leading to necrotic death of U251 glioma cells but not primary astrocytes. NDI/2DG-induced death of glioma cells was partly prevented by lysosomal cathepsin inhibitor E64 and antioxidant α-tocopherol, suggesting the involvement of LMP and oxidative stress in the observed cytotoxicity. LMP-inducing agent chloroquine also displayed a synergistic anticancer effect with 2DG, whereas glucose deprivation or glycolytic inhibitors iodoacetate and sodium fluoride synergistically cooperated with NDI, thus further indicating that the anticancer effect of NDI/2DG combination was indeed due to LMP and glycolysis block. The two agents synergistically induced ATP depletion, mitochondrial depolarization, oxidative stress, and necrotic death also in B16 mouse melanoma cells. Moreover, the combined oral administration of NDI and 2DG reduced in vivo melanoma growth in C57BL/6 mice by inducing necrotic death of tumor cells, without causing liver, spleen, or kidney toxicity. Based on these results, we propose that NDI-triggered LMP causes initial mitochondrial damage that is further increased by 2DG due to the lack of glycolytic ATP required to maintain mitochondrial health. This leads to a positive feedback cycle of mitochondrial dysfunction, ATP loss, and reactive oxygen species production, culminating in necrotic cell death. Therefore, the combination of LMP-inducing agents and glycolysis inhibitors seems worthy of further exploration as an anticancer strategy.


Assuntos
Desoxiglucose/farmacologia , Glioma/metabolismo , Glicólise/efeitos dos fármacos , Imidazóis/farmacologia , Lisossomos/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos dos fármacos , Sinergismo Farmacológico , Glioma/tratamento farmacológico , Glioma/fisiopatologia , Humanos , Lisossomos/genética , Lisossomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA