Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Naunyn Schmiedebergs Arch Pharmacol ; 395(2): 167-185, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34988596

RESUMO

Ischemic stroke presents multifaceted pathological outcomes with overlapping mechanisms of cerebral injury. High mortality and disability with stroke warrant a novel multi-targeted therapeutic approach. The neuroprotection with progesterone (PG) and noscapine (NOS) on cerebral ischemia-reperfusion (I-R) injury was demonstrated individually, but the outcome of combination treatment to alleviate cerebral damage is still unexplored. Randomly divided groups of rats (n = 6) were Sham-operated, I-R, PG (8 mg/kg), NOS (10 mg/kg), and PG + NOS (8 mg/kg + 10 mg/kg). The rats were exposed to bilateral common carotid artery occlusion, except Sham-operated, to investigate the therapeutic outcome of PG and NOS alone and in combination on I-R injury. Besides the alterations in cognitive and motor abilities, we estimated infarct area, oxidative stress, blood-brain barrier (BBB) permeability, and histology after treatment. Pharmacokinetic parameters like Cmax, Tmax, half-life, and AUC0-t were estimated in biological samples to substantiate the therapeutic outcomes of the combination treatment. We report PG and NOS prevent loss of motor ability and improve spatial memory after cerebral I-R injury. Combination treatment significantly reduced inflammation and restricted infarction; it attenuated oxidative stress and BBB damage and improved grip strength. Histopathological analysis demonstrated a significant reduction in leukocyte infiltration with the most profound effect in the combination group. Simultaneous analysis of PG and NOS in plasma revealed enhanced peak drug concentration, improved AUC, and prolonged half-life; the drug levels in the brain have increased significantly for both. We conclude that PG and NOS have beneficial effects against brain damage and the co-administration further reinforced neuroprotection in the cerebral ischemia-reperfusion injury.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Fármacos Neuroprotetores/administração & dosagem , Noscapina/administração & dosagem , Progesterona/administração & dosagem , Animais , Área Sob a Curva , Barreira Hematoencefálica/metabolismo , Modelos Animais de Doenças , Quimioterapia Combinada , Meia-Vida , AVC Isquêmico/tratamento farmacológico , Masculino , Fármacos Neuroprotetores/farmacocinética , Fármacos Neuroprotetores/farmacologia , Noscapina/farmacocinética , Noscapina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Progesterona/farmacocinética , Progesterona/farmacologia , Ratos , Ratos Wistar , Traumatismo por Reperfusão/tratamento farmacológico
3.
Naunyn Schmiedebergs Arch Pharmacol ; 394(4): 669-683, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33106921

RESUMO

With high unmet medical needs, stroke remains an intensely focused research area. Although noscapine is a neuroprotective agent, its mechanism of action in ischemic-reperfusion (I-R) injury is yet to be ascertained. We investigated the effect of noscapine on the molecular mechanisms of cell damage using yeast, and its neuroprotection on cerebral I-R injury in rats. Yeast, both wild-type and Δtrx2 strains, was evaluated for cell growth and viability, and oxidative stress to assess the noscapine effect at 8, 10, 12, and 20 µg/ml concentrations. The neuroprotective activity of noscapine (5 and 10 mg/kg; po for 8 days) was investigated in rats using middle cerebral artery occlusion-induced I-R injury. Infarct volume, neurological deficit, oxidative stress, myeloperoxidase activity, and histological alterations were determined in I-R rats. In vitro yeast assays exhibited significant antioxidant activity and enhanced cell tolerance against oxidative stress after noscapine treatment. Similarly, noscapine pretreatment significantly reduced infarct volume and edema in the brain. The neurological deficit was decreased and oxidative stress biomarkers, superoxide dismutase activity and glutathione levels, were significantly increased while lipid peroxidation showed significant decrease in comparison to vehicle-treated I-R rats. Myeloperoxidase activity, an indicator of inflammation, was also reduced significantly in treated rats; histological changes were attenuated with noscapine. The study demonstrates the protective effect of noscapine in yeast and I-R rats by improving cell viability and attenuating neuronal damage, respectively. This protective activity of noscapine could be attributed to potent free radical scavenging and inhibition of inflammation in cerebral ischemia-reperfusion injury.


Assuntos
Infarto da Artéria Cerebral Média/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Noscapina/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Marcha/efeitos dos fármacos , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Masculino , Força Muscular/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Noscapina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/metabolismo , Desempenho Psicomotor/efeitos dos fármacos , Ratos Wistar , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA