Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultramicroscopy ; 253: 113795, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37399618

RESUMO

We present a spatially resolved X-ray magnetic linear dichroism study of high quality micron-sized mixed nickel-cobalt oxide (NCO) crystals. NixCo1-xO was prepared in-situ by high-temperature oxygen-assisted molecular beam epitaxy on a Ru(0001) single crystal substrate. To check the effect of incorporating Ni into the cobalt oxide films, three different compositions were prepared. The element-specific XMLD measurements reveal strong antiferromagnetic contrast at room temperature and magnetic domains up to one micron in size, reflecting the high structural quality of the NCO islands. By means of vectorial magnetometry, the antiferromagnetic spin axis orientation of the domains was determined with nanometer spatial resolution, and found to depend on the stoichiometry of the prepared crystals.

2.
Nanoscale ; 12(41): 21225-21233, 2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33057545

RESUMO

We present a spatially resolved X-ray magnetic dichroism study of high-quality, in situ grown nickel oxide films. NiO thin films were deposited on a Ru(0001) substrate by high temperature oxygen-assisted molecular beam epitaxy. We found that by adding a small amount of Fe, the growth mode can be modified in order to promote the formation of micron-sized, triangular islands. The morphology, shape, crystal structure and composition are determined by low-energy electron microscopy and diffraction, and synchrotron based X-ray absorption spectromicroscopy. The element specific XMLD measurements reveal strong antiferromagnetic contrast at room temperature and domains with up to micron sizes, reflecting the high structural quality of the islands. By means of vectorial magnetometry, the spin axis orientation was determined with nanometer spatial resolution, and found to depend on the relative orientation of the film and substrate lattices.

3.
Ultramicroscopy ; 214: 113010, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32408179

RESUMO

We present a custom-made sample holder system for use in Elmitec Low Energy and PhotoEmission Electron Microscopes. It consists of two different sample holder bodies: one with a filament for high temperature measurements (up to more than 1500 K) and the other with integrated electromagnets for the in-situ application of in-plane/out-of-plane small magnetic fields. The sample is placed on a platelet which can be transferred between the two holders. This opens up new possibilities for the preparation of samples at high temperatures and investigation of their behavior under applied magnetic fields without leaving the ultra high vacuum system.

4.
Sci Rep ; 9(1): 13584, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31537821

RESUMO

We show that it is possible to tune the Néel temperature of nickel(II)-cobalt(II) oxide films by changing the Ni to Co ratio. We grow single crystalline micrometric triangular islands with tens of nanometers thickness on a Ru(0001) substrate using high temperature oxygen-assisted molecular beam epitaxy. Composition is controlled by adjusting the deposition rates of Co and Ni. The morphology, shape, crystal structure and composition are determined by low-energy electron microscopy and diffraction, and synchrotron-based x-ray absorption spectromicroscopy. The antiferromagnetic order is observed by x-ray magnetic linear dichroism. Antiferromagnetic domains up to micrometer width are observed.

5.
Sci Rep ; 8(1): 17980, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30568169

RESUMO

We demonstrate the preparation of ultrathin Fe-rich nickel ferrite (NFO) islands on a metal substrate. Their nucleation and growth are followed in situ by low-energy electron microscopy (LEEM). A comprehensive characterization is performed combining LEEM for structural characterization and PEEM (PhotoEmission Electron Microscopy) with synchrotron radiation for chemical and magnetic analysis via X-ray Absorption Spectroscopy and X-ray Magnetic Circular Dichroism (XAS-PEEM and XMCD-PEEM, respectively). The growth by oxygen-assisted molecular beam epitaxy takes place in two stages. First, islands with the rocksalt structure nucleate and grow until they completely cover the substrate surface. Later three-dimensional islands of spinel phase grow on top of the wetting layer. Only the spinel islands show ferromagnetic contrast, with the same domains being observed in the Fe and Ni XMCD images. The estimated magnetic moments of Fe and Ni close to the islands surface indicate a possible role of the bi-phase reconstruction. A significant out-of-plane magnetization component was detected by means of XMCD-PEEM vector maps.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA