Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
PLoS One ; 16(6): e0253168, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34133466

RESUMO

Insulin glargine is a long-acting analogue of human insulin that has been used to manage hyperglycemia in patients with diabetes mellitus (DM) for nearly 20 years. Insulin glargine has a relatively constant concentration-time profile that mimics basal levels of insulin and allows for once-daily administration. MYL-1501D is a biosimilar insulin glargine designed to offer greater access of insulin glargine to patients, with comparable efficacy and safety to the marketed reference product. We conducted a comprehensive panel of studies based on a formal analysis of critical quality attributes to characterize the structural and functional properties of MYL-1501D and reference insulin glargine products available in the United States and European Union. MYL-1501D was comprehensively shown to have high similarity to the reference products in terms of protein structure, metabolic activity (both in vitro cell-based assays and in vivo rabbit bioassays), and in vitro cell-based assays for mitogenic activity. The structural analyses demonstrated that the primary protein sequence was identical, and secondary and tertiary structures are similar between the proposed biosimilar and the reference products. Insulin receptor binding affinity and phosphorylation studies also established analytical similarity. MYL-1501D demonstrated high similarity in different metabolic assays of glucose uptake, adipogenesis activity, and inhibition of stimulated lipolysis. Rabbit bioassay studies showed MYL-1501D and EU-approved insulin glargine are highly similar to US-licensed insulin glargine. These product quality studies show high similarity between MYL-1501D and licensed or approved insulin glargine products and suggest the potential of MYL-1501D as an alternative cost-effective treatment option for patients and clinicians.


Assuntos
Insulina Glargina/química , Células 3T3 , Adipogenia/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Medicamentos Biossimilares/química , Medicamentos Biossimilares/farmacologia , Células CHO , Dicroísmo Circular , Cricetulus , Cromatografia Gasosa-Espectrometria de Massas , Glucose/metabolismo , Humanos , Insulina Glargina/farmacologia , Lipólise/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Camundongos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Coelhos , Espectroscopia de Infravermelho com Transformada de Fourier
2.
J Basic Clin Pharm ; 3(2): 283-93, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24826038

RESUMO

Diabetes is a metabolic disorder where in human body does not produce or properly uses insulin, a hormone that is required to convert sugar, starches and other food into energy. Diabetes finally leads to more complications and to prevent these complications insulin and its analogues are used. After more than half a century of treating diabetics with animal insulin's, recombinant DNA technologies and advanced protein chemistry made human insulin preparations available in the early 1980s. As the next step, over the last decade, insulin analogues were constructed by changing the structure of the native protein with the goal of improving the therapeutic properties of it, because the pharmacokinetic characteristics of rapid, intermediate and long-acting preparations of human insulin make it almost impossible to achieve sustained normoglycemia. The first clinically available insulin analogue, lispro, confirmed the hopes by showing that improved glycaemic control can be achieved without an increase in hypoglycaemic events. Two new insulin analogues, insulin glargine and insulin aspart, have recently been approved for clinical use in the United States and several other analogues are being intensively tested.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...