Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Food Microbiol ; 339: 109032, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33388709

RESUMO

Clostridioides difficile is one of the most frequent causes of nosocomial infections in humans leading to (antibiotic-associated) diarrhea and severe pseudomembranous colitis. With an increasing frequency, C. difficile infections (CDI) are also observed independently of hospitalization and the age of the patients in an ambulant setting. One potential source of so-called community-acquired CDI is a zoonotic transmission to humans based on direct contact with animals or the consumption of food. To estimate the exposure of humans with C. difficile via food, we screened 364 different retail fresh poultry meat products purchased in Berlin and Brandenburg, Germany and further characterized the isolates. None of the 42 turkey or chicken meat samples without skin was contaminated. However, 51 (15.8%) of 322 tested fresh chicken meat samples with skin were C. difficile-positive. The vast majority (84.3%) of all isolates exhibited toxin genes tcdA and tcdB, whereas the binary toxin cdtA/B was absent. Most of the isolates (50/51) were susceptible to all six investigated antimicrobials. However, one non-toxigenic strain was multidrug resistant to the antimicrobials clindamycin and erythromycin. The isolates were mainly represented by PCR-ribotypes (RT) 001, RT002, RT005, and RT014, which were already associated with human CDI cases in Germany and were partially detected in poultry. The relatively high contamination rate of fresh retail chicken meat with skin purchased in Germany indicates chicken meat as a potential source of human infections. Moreover, we identified cutting plants with a higher rate of a C. difficile-contamination (21.4-32.8%). To compare the phylogenetic relationship of the isolated strains from certain cutting plants over several months in 2018 and 2019, we analyzed them using NGS followed by core genome MLST. Interestingly, highly related strains (0-3 alleles distance) of common clinical RT001 and RT002 isolates, as well as of the non-toxigenic RT205 isolates were detectable in same cutting plants over a period of three and 16 months, respectively.The continuous contamination with the same strain could be explained by the longterm persistence of this strain within the cutting plant (e.g., within the scalder), or with a recurring entry e.g. from the same fattening farm.


Assuntos
Clostridioides difficile/classificação , Carne/microbiologia , Filogenia , Aves Domésticas/microbiologia , Animais , Toxinas Bacterianas/genética , Clostridioides difficile/genética , Indústria Alimentícia/estatística & dados numéricos , Alemanha , Tipagem de Sequências Multilocus , Reação em Cadeia da Polimerase , Prevalência , Ribotipagem
2.
Mol Oncol ; 10(8): 1232-44, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27324824

RESUMO

Histone deacetylase (HDAC) inhibitors such as suberoylanilide hydroxamic acid (SAHA) are not commonly used in clinical practice for treatment of B-cell lymphomas, although a subset of patients with refractory or relapsed B-cell lymphoma achieved partial or complete remissions. Therefore, the purpose of this study was to identify molecular features that predict the response of B-cell lymphomas to SAHA treatment. We designed an integrative approach combining drug efficacy testing with exome and captured target analysis (DETECT). In this study, we tested SAHA sensitivity in 26 B-cell lymphoma cell lines and determined SAHA-interacting proteins in SAHA resistant and sensitive cell lines employing a SAHA capture compound (CC) and mass spectrometry (CCMS). In addition, we performed exome mutation analysis. Candidate validation was done by expression analysis and knock-out experiments. An integrated network analysis revealed that the Src tyrosine kinase Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene homolog (FGR) is associated with SAHA resistance. FGR was specifically captured by the SAHA-CC in resistant cells. In line with this observation, we found that FGR expression was significantly higher in SAHA resistant cell lines. As functional proof, CRISPR/Cas9 mediated FGR knock-out in resistant cells increased SAHA sensitivity. In silico analysis of B-cell lymphoma samples (n = 1200) showed a wide range of FGR expression indicating that FGR expression might help to stratify patients, which clinically benefit from SAHA therapy. In conclusion, our comprehensive analysis of SAHA-interacting proteins highlights FGR as a factor involved in SAHA resistance in B-cell lymphoma.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Linfoma de Células B/patologia , Proteínas Proto-Oncogênicas/metabolismo , Quinases da Família src/metabolismo , Linhagem Celular Tumoral , Técnicas de Inativação de Genes , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Espectrometria de Massas , Mutação/genética , Reprodutibilidade dos Testes , Vorinostat
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...