Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 15(4)2023 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-37104225

RESUMO

HABs pose a threat to coastal ecosystems, the economic sector and human health, and are expanding globally. However, their influence on copepods, a major connector between primary producers and upper trophic levels, remains essentially unknown. Microalgal toxins can eventually control copepod survival and reproduction by deterring grazing and hence reducing food availability. We present several 24-h experiments in which the globally distributed marine copepod, Acartia tonsa, was exposed to different concentrations of the toxic dinoflagellate, Alexandrium minutum, grown under three N:P ratios (4:1, 16:1 and 80:1), with the simultaneous presence of non-toxic food (the dinoflagellate Prorocentrum micans). The different N:P ratios did not affect the toxicity of A. minutum, probably due to the low toxicity of the tested strain. Production of eggs and pellets as well as ingested carbon appeared to be affected by food toxicity. Toxicity levels in A. minutum also had an effect on hatching success and on the toxin excreted in pellets. Overall, A. minutum toxicity affected the reproduction, toxin excretion and, to an extent, the feeding behavior of A. tonsa. This work indicates that even short-term exposure to toxic A. minutum can impact the vital functions of A. tonsa and might ultimately pose serious threats to copepod recruitment and survival. Still, further investigation is required for identifying and understanding, in particular, the long-term effects of harmful microalgae on marine copepods.


Assuntos
Copépodes , Dinoflagellida , Microalgas , Animais , Humanos , Ecossistema , Toxinas Marinhas/toxicidade , Comportamento Alimentar
2.
J Phycol ; 47(6): 1258-65, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27020349

RESUMO

Shotgun genome sequencing is rapidly emerging as the method of choice for the identification of microsatellite loci in nonmodel organisms. However, to the best of our knowledge, this approach has not been applied to marine algae so far. Herein, we report the results of using the 454 next-generation sequencing (NGS) platform to randomly sample 36.0 and 40.9 Mbp (139,786 and 139,795 reads, respectively) of the genome of two red algae from the northwest Iberian Peninsula [Grateloupia lanceola (J. Agardh) J. Agardh and a still undescribed new member of the family Cruoriaceae]. Using data mining tools, we identified 4,766 and 5,174 perfect microsatellite loci in 4,344 and 4,504 sequences/contigs from G. lanceola and the Cruoriaceae, respectively. After conservative removal of potentially problematic loci (redundant sequences, mobile elements), primer design was possible for 1,371 and 1,366 loci, respectively. A survey of the literature indicates that microsatellite density in our Rhodophyta is at the low end of the values reported for other organisms investigated with the same technology (land plants and animals). A limited number of loci were successfully tested for PCR amplification and polymorphism finding that they may be suitable for population genetic studies. This study demonstrates that random genome sequencing is a rapid, effective alternative to develop useful microsatellite loci in previously unstudied red algae.

3.
J Phycol ; 47(2): 259-68, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27021858

RESUMO

Although marine macroalgae have recently entered the lists of endangered species, conservation efforts are still limited by a lack of data, particularly for naturally rare species. One example is the turf-forming Ahnfeltiopsis pusilla (Mont.) P. C. Silva et DeCew. Albeit cataloged as vulnerable in the Northwest Iberian Peninsula (NWIP), where it occurs only at five enclaves separated by 1,200 km from the closest recorded presence of the species, nothing is known about its genetic diversity and population connectivity. We used amplified fragment length polymorphism (AFLP) and sequences of the intergenic region between the mitochondrial cytochrome oxidase subunit 2 and subunit 3 genes (cox2-3) to investigate its genetic structure at large (1,200 km), regional (<125 km), fine (<250 m), and patch (<1 m) scales. While cox2-3 variability was too low for the intraspecific study, AFLP revealed that most of the genetic diversity was due to differences between populations. Locally, genetic diversity was always low, and clones were frequent, suggesting that asexual reproduction may be common; patches of turf, however, often were composites of various genetic individuals. Genetic structure at local, regional, and large scales indicated that A. pusilla is a poor disperser, and an assignment test found no evidence of real-time dispersal between NWIP sites. Therefore, it is proposed that the five NWIP enclaves are designated independent management units (MUs). Bayesian-clustering approaches suggested that the three southernmost sites are particularly valuable for conservation since they concentrate most of the genetic heritage of A. pusilla in NWIP. Our study shows that the approaches of conservation genetics may provide useful insights for endangered seaweeds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA