Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36365861

RESUMO

In a world accelerating the energy transition towards renewable sources, high voltage transmission lines represent strategic infrastructure for power delivery. Being slender and low-damped structures, HVTL conductors are affected by wind-induced vibrations that can lead to severe fatigue issues in conductors and other components. Vibration monitoring could represent a key activity to assess the safety level of the line and perform condition-based maintenance activities. This work proposes an innovative approach based on the knowledge of the physical phenomena and smart technological devices. A wireless monitoring system based on MEMS accelerometers and energy harvesting techniques has been designed to measure the fymax parameter in the field, which represents a fatigue indicator useful to identify the different wind-induced phenomena and assess the conductors' strain level. A field test on a Canadian transmission line was used in the check of the efficiency of the system and collection of significant data. Vibrations due to vortex shedding were identified with a maximum value of fymax = 50 m/s, while subspan oscillation and galloping were not observed. We show the novel method can detect the different wind-induced phenomena and pave the way to the development of suitable software able to compute a conductor's residual fatigue life.


Assuntos
Vibração , Vento , Humanos , Canadá , Software , Fadiga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...