Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38260306

RESUMO

Apical-out organoids produced through eversion triggered by extra-organoid extracellular matrix (ECM) removal or degradation are generally small, structurally variable, and limited for viral infection and therapeutics testing. This work describes ECM-encapsulating, stably-inverted apical-out human upper airway organoids (AORBs) that are large (~500 µm diameter), consistently spherical, recapitulate in vivo-like cellular heterogeneity, and maintain their inverted morphology for over 60 days. Treatment of AORBs with IL-13 skews differentiation towards goblet cells and the apical-out geometry allows extra-organoid mucus collection. AORB maturation for 14 days induces strong co-expression of ACE2 and TMPRSS2 to allow high-yield infection with five SARS-CoV-2 variants. Dose-response analysis of three well-studied SARS-CoV-2 antiviral compounds [remdesivir, bemnifosbuvir (AT-511), and nirmatrelvir] shows AORB antiviral assays to be comparable to gold-standard air-liquid interface cultures, but with higher throughput (~10-fold) and fewer cells (~100-fold). While this work focuses on SARS-CoV-2 applications, the consistent AORB shape and size, and one-organoid-per-well modularity broadly impacts in vitro human cell model standardization efforts in line with economic imperatives and recently updated FDA regulation on therapeutic testing.

2.
ACS Med Chem Lett ; 14(10): 1338-1343, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37849531

RESUMO

Cystic fibrosis (CF) is an autosomal genetic disorder caused by disrupted anion transport in epithelial cells lining tissues in the human airways and digestive system. While cystic fibrosis transmembrane conductance regulator (CFTR) modulator compounds have provided transformative improvement in CF respiratory function, certain patients exhibit marginal clinical benefit or detrimental effects or have a form of the disease not approved or unlikely to respond using CFTR modulation. We tested hit compounds from a 300,000-drug screen for their ability to augment CFTR transepithelial transport alone or in combination with the FDA-approved CFTR potentiator ivacaftor (VX-770). A subsequent SAR campaign led us to a class of 7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazines that in combination with VX-770 rescued function of G551D mutant CFTR channels to approximately 400% above the activity of VX-770 alone and to nearly wild-type CFTR levels in the same Fischer rat thyroid model system.

3.
FASEB J ; 37(11): e23220, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37801035

RESUMO

Patients with cystic fibrosis (CF) exhibit pronounced respiratory damage and were initially considered among those at highest risk for serious harm from SARS-CoV-2 infection. Numerous clinical studies have subsequently reported that individuals with CF in North America and Europe-while susceptible to severe COVID-19-are often spared from the highest levels of virus-associated mortality. To understand features that might influence COVID-19 among patients with cystic fibrosis, we studied relationships between SARS-CoV-2 and the gene responsible for CF (i.e., the cystic fibrosis transmembrane conductance regulator, CFTR). In contrast to previous reports, we found no association between CFTR carrier status (mutation heterozygosity) and more severe COVID-19 clinical outcomes. We did observe an unexpected trend toward higher mortality among control individuals compared with silent carriers of the common F508del CFTR variant-a finding that will require further study. We next performed experiments to test the influence of homozygous CFTR deficiency on viral propagation and showed that SARS-CoV-2 production in primary airway cells was not altered by the absence of functional CFTR using two independent protocols. On the contrary, experiments performed in vitro strongly indicated that virus proliferation depended on features of the mucosal fluid layer known to be disrupted by absent CFTR in patients with CF, including both low pH and increased viscosity. These results point to the acidic, viscous, and mucus-obstructed airways in patients with cystic fibrosis as unfavorable for the establishment of coronaviral infection. Our findings provide new and important information concerning relationships between the CF clinical phenotype and severity of COVID-19.


Assuntos
COVID-19 , Fibrose Cística , Humanos , Fibrose Cística/complicações , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Mutação , Gravidade do Paciente , SARS-CoV-2
4.
Nature ; 618(7966): 842-848, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37258671

RESUMO

Nonsense mutations are the underlying cause of approximately 11% of all inherited genetic diseases1. Nonsense mutations convert a sense codon that is decoded by tRNA into a premature termination codon (PTC), resulting in an abrupt termination of translation. One strategy to suppress nonsense mutations is to use natural tRNAs with altered anticodons to base-pair to the newly emerged PTC and promote translation2-7. However, tRNA-based gene therapy has not yielded an optimal combination of clinical efficacy and safety and there is presently no treatment for individuals with nonsense mutations. Here we introduce a strategy based on altering native tRNAs into  efficient suppressor tRNAs (sup-tRNAs) by individually fine-tuning their sequence to the physico-chemical properties of the amino acid that they carry. Intravenous and intratracheal lipid nanoparticle (LNP) administration of sup-tRNA in mice restored the production of functional proteins with nonsense mutations. LNP-sup-tRNA formulations caused no discernible readthrough at endogenous native stop codons, as determined by ribosome profiling. At clinically important PTCs in the cystic fibrosis transmembrane conductance regulator gene (CFTR), the sup-tRNAs re-established expression and function in cell systems and patient-derived nasal epithelia and restored airway volume homeostasis. These results provide a framework for the development of tRNA-based therapies with a high molecular safety profile and high efficacy in targeted PTC suppression.


Assuntos
Códon sem Sentido , Regulador de Condutância Transmembrana em Fibrose Cística , RNA de Transferência , Animais , Camundongos , Aminoácidos/genética , Códon sem Sentido/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , RNA de Transferência/administração & dosagem , RNA de Transferência/genética , RNA de Transferência/uso terapêutico , Pareamento de Bases , Anticódon/genética , Biossíntese de Proteínas , Mucosa Nasal/metabolismo , Perfil de Ribossomos
5.
J Nat Prod ; 85(3): 657-665, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35290044

RESUMO

Since early 2020, disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic, causing millions of infections and deaths worldwide. Despite rapid deployment of effective vaccines, it is apparent that the global community lacks multipronged interventions to combat viral infection and disease. A major limitation is the paucity of antiviral drug options representing diverse molecular scaffolds and mechanisms of action. Here we report the antiviral activities of three distinct marine natural products─homofascaplysin A (1), (+)-aureol (2), and bromophycolide A (3)─evidenced by their ability to inhibit SARS-CoV-2 replication at concentrations that are nontoxic toward human airway epithelial cells. These compounds stand as promising candidates for further exploration toward the discovery of novel drug leads against SARS-CoV-2.


Assuntos
Produtos Biológicos , Tratamento Farmacológico da COVID-19 , Antivirais/farmacologia , Produtos Biológicos/farmacologia , Células Epiteliais , Humanos , SARS-CoV-2
6.
Sci Rep ; 12(1): 1540, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35087167

RESUMO

Primary cells isolated from the human respiratory tract are the state-of-the-art for in vitro airway epithelial cell research. Airway cell isolates require media that support expansion of cells in a basal state to maintain the capacity for differentiation as well as proper cellular function. By contrast, airway cell differentiation at an air-liquid interface (ALI) requires a distinct medium formulation that typically contains high levels of glucose. Here, we expanded and differentiated human basal cells isolated from the nasal and conducting airway to a mature mucociliary epithelial cell layer at ALI using a medium formulation containing normal resting glucose levels. Of note, bronchial epithelial cells expanded and differentiated in normal resting glucose medium showed insulin-stimulated glucose uptake which was inhibited by high glucose concentrations. Normal glucose containing ALI also enabled differentiation of nasal and tracheal cells that showed comparable electrophysiological profiles when assessed for cystic fibrosis transmembrane conductance regulator (CFTR) function and that remained responsive for up to 7 weeks in culture. These data demonstrate that normal glucose containing medium supports differentiation of primary nasal and lung epithelial cells at ALI, is well suited for metabolic studies, and avoids pitfalls associated with exposure to high glucose.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística
7.
Front Mol Biosci ; 7: 140, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793628

RESUMO

Bacillus subtilis PcrA abrogates replication-transcription conflicts in vivo and disrupts RecA nucleoprotein filaments in vitro. Inactivation of pcrA is lethal. We show that PcrA depletion lethality is suppressed by recJ (involved in end resection), recA (the recombinase), or mfd (transcription-coupled repair) inactivation, but not by inactivating end resection (addAB or recQ), positive and negative RecA modulators (rarA or recX and recU), or genes involved in the reactivation of a stalled RNA polymerase (recD2, helD, hepA, and ywqA). We also report that B. subtilis mutations previously designated as recL16 actually map to the recO locus, and confirm that PcrA depletion lethality is suppressed by recO inactivation. The pcrA gene is epistatic to recA or mfd, but it is not epistatic to addAB, recJ, recQ, recO16, rarA, recX, recU, recD2, helD, hepA, or ywqA in response to DNA damage. PcrA depletion led to the accumulation of unsegregated chromosomes, and this defect is increased by recQ, rarA, or recU inactivation. We propose that PcrA, which is crucial to maintain cell viability, is involved in different DNA transactions.

8.
J Virol ; 94(19)2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32699094

RESUMO

The newly emerged human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a pandemic of respiratory illness. Current evidence suggests that severe cases of SARS-CoV-2 are associated with a dysregulated immune response. However, little is known about how the innate immune system responds to SARS-CoV-2. In this study, we modeled SARS-CoV-2 infection using primary human airway epithelial (pHAE) cultures, which are maintained in an air-liquid interface. We found that SARS-CoV-2 infects and replicates in pHAE cultures and is directionally released on the apical, but not basolateral, surface. Transcriptional profiling studies found that infected pHAE cultures had a molecular signature dominated by proinflammatory cytokines and chemokine induction, including interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), and CXCL8, and identified NF-κB and ATF-4 as key drivers of this proinflammatory cytokine response. Surprisingly, we observed a complete lack of a type I or III interferon (IFN) response to SARS-CoV-2 infection. However, pretreatment and posttreatment with type I and III IFNs significantly reduced virus replication in pHAE cultures that correlated with upregulation of antiviral effector genes. Combined, our findings demonstrate that SARS-CoV-2 does not trigger an IFN response but is sensitive to the effects of type I and III IFNs. Our studies demonstrate the utility of pHAE cultures to model SARS-CoV-2 infection and that both type I and III IFNs can serve as therapeutic options to treat COVID-19 patients.IMPORTANCE The current pandemic of respiratory illness, COVID-19, is caused by a recently emerged coronavirus named SARS-CoV-2. This virus infects airway and lung cells causing fever, dry cough, and shortness of breath. Severe cases of COVID-19 can result in lung damage, low blood oxygen levels, and even death. As there are currently no vaccines approved for use in humans, studies of the mechanisms of SARS-CoV-2 infection are urgently needed. Our research identifies an excellent system to model SARS-CoV-2 infection of the human airways that can be used to test various treatments. Analysis of infection in this model system found that human airway epithelial cell cultures induce a strong proinflammatory cytokine response yet block the production of type I and III IFNs to SARS-CoV-2. However, treatment of airway cultures with the immune molecules type I or type III interferon (IFN) was able to inhibit SARS-CoV-2 infection. Thus, our model system identified type I or type III IFN as potential antiviral treatments for COVID-19 patients.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Células Epiteliais/imunologia , Interferon Tipo I/imunologia , Interferons/imunologia , Pneumonia Viral/imunologia , Animais , Betacoronavirus/fisiologia , Brônquios/citologia , Brônquios/imunologia , Brônquios/virologia , COVID-19 , Linhagem Celular , Células Cultivadas , Quimiocinas/imunologia , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Citocinas/imunologia , Cães , Células Epiteliais/virologia , Humanos , Pulmão/citologia , Pulmão/imunologia , Pulmão/virologia , Células Madin Darby de Rim Canino , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2 , Células Vero , Replicação Viral , Interferon lambda
10.
Anal Biochem ; 413(2): 179-84, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21329650

RESUMO

The ability to monitor and characterize DNA mismatch repair activity in various mammalian cells is important for understanding mechanisms involved in mutagenesis and tumorigenesis. Since mismatch repair proteins recognize mismatches containing both normal and chemically altered or damaged bases, in vitro assays must accommodate a variety of mismatches in different sequence contexts. Here we describe the construction of DNA mismatch substrates containing G:T or O(6)meG:T mismatches, the purification of recombinant native human MutSα (MSH2-MSH6) and MutLα (MLH1-PMS2) proteins, and in vitro mismatch repair and excision assays that can be adapted to study mismatch repair in nuclear extracts from mismatch repair proficient and deficient cells.


Assuntos
Reparo de Erro de Pareamento de DNA , Enzimas Reparadoras do DNA/metabolismo , Proteínas Recombinantes/metabolismo , Sequência de Bases , Linhagem Celular , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/isolamento & purificação , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/isolamento & purificação , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteínas MutL , Polinucleotídeos/química , Polinucleotídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
11.
Nucleic Acids Res ; 38(20): 6920-9, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20581116

RESUMO

Bacillus subtilis RecO plays a central role in recombinational repair and genetic recombination by (i) stimulating RecA filamentation onto SsbA-coated single-stranded (ss) DNA, (ii) modulating the extent of RecA-mediated DNA strand exchange and (iii) promoting annealing of complementary DNA strands. Here, we report that RecO-mediated strand annealing is facilitated by cognate SsbA, but not by a heterologous one. Analysis of non-productive intermediates reveals that RecO interacts with SsbA-coated ssDNA, resulting in transient ternary complexes. The self-interaction of ternary complexes via RecO led to the formation of large nucleoprotein complexes. In the presence of homology, SsbA, at the nucleoprotein, removes DNA secondary structures, inhibits spontaneous strand annealing and facilitates RecO loading onto SsbA-ssDNA complex. RecO relieves SsbA inhibition of strand annealing and facilitates transient and random interactions between homologous naked ssDNA molecules. Finally, both proteins lose affinity for duplex DNA. Our results provide a mechanistic framework for rationalizing protein release and dsDNA zippering as coordinated events that are crucial for RecA-independent plasmid transformation.


Assuntos
Proteínas de Bactérias/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Bacillus subtilis/genética , DNA/química , DNA/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/ultraestrutura , Microscopia de Força Atômica , Recombinação Genética , Homologia de Sequência do Ácido Nucleico
12.
PLoS Genet ; 5(9): e1000630, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19730681

RESUMO

Cytological and genetic evidence suggests that the Bacillus subtilis DNA uptake machinery localizes at a single cell pole and takes up single-stranded (ss) DNA. The integration of homologous donor DNA into the recipient chromosome requires RecA, while plasmid establishment, which is independent of RecA, requires at least RecO and RecU. RecA and RecN colocalize at the polar DNA uptake machinery, from which RecA forms filamentous structures, termed threads, in the presence of chromosomal DNA. We show that the transformation of chromosomal and of plasmid DNA follows distinct pathways. In the absence of DNA, RecU accumulated at a single cell pole in competent cells, dependent on RecA. Upon addition of any kind of DNA, RecA formed highly dynamic thread structures, which rapidly grew and shrank, and RecU dissipated from the pole. RecO visibly accumulated at the cell pole only upon addition of plasmid DNA, and, to a lesser degree, of phage DNA, but not of chromosomal DNA. RecO accumulation was weakly influenced by RecN, but not by RecA. RecO annealed ssDNA complexed with SsbA in vitro, independent of any nucleotide cofactor. The DNA end-joining Ku protein was also found to play a role in viral and plasmid transformation. On the other hand, transfection with SPP1 phage DNA required functions from both chromosomal and plasmid transformation pathways. The findings show that competent bacterial cells possess a dynamic DNA recombination machinery that responds in a differential manner depending if entering DNA shows homology with recipient DNA or has self-annealing potential. Transformation with chromosomal DNA only requires RecA, which forms dynamic filamentous structures that may mediate homology search and DNA strand invasion. Establishment of circular plasmid DNA requires accumulation of RecO at the competence pole, most likely mediating single-strand annealing, and RecU, which possibly down-regulates RecA. Transfection with SPP1 viral DNA follows an intermediate route that contains functions from both chromosomal and plasmid transformation pathways.


Assuntos
Bacillus subtilis/genética , Transferência Genética Horizontal , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA/genética , Plasmídeos/genética
13.
J Biol Chem ; 283(36): 24837-47, 2008 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-18599486

RESUMO

Subsaturating amounts of Bacillus subtilis SsbA, independently of the order of addition, partially inhibit the single-stranded DNA-dependent dATPase activity of RecA. This negative effect is fully overcome when a substoichiometric amount of RecO is added. SsbA added prior to RecA does not stimulate the dATP-dependent DNA strand exchange activity; however, added after RecA it enhances the extent of strand exchange. The addition of RecO stimulates RecA-mediated joint molecule formation, although it limits the accumulation of final recombination products. Thus we suggest that RecO has a dual activity: RecO acts as a RecA mediator enabling RecA to utilize SsbA-coated single-stranded DNA as a polymerization substrate and controls RecA-mediated DNA strand exchange by limiting its extent. We herein discuss the possible mechanisms of RecO involvement in the regulation of double strand break repair and genetic transformation.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Recombinases Rec A/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/fisiologia , DNA Bacteriano/genética , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/genética , Recombinases Rec A/genética , Recombinação Genética/fisiologia
14.
DNA Repair (Amst) ; 7(6): 990-6, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18472308

RESUMO

Bacillus subtilis RecA preferentially hydrolyzes dATP over ATP and supports an efficient DNA strand exchange reaction in the presence of dATP when compared to ATP. Saturating amounts of SsbA, independently of the order of addition, reduce the single-stranded (ss) DNA-dependent dATPase activity of RecA, and block the ATPase activity. SsbA added prior to RecA slightly stimulates the dATP-dependent DNA strand exchange activity, whereas added after RecA greatly enhances the extent of strand exchange. In the presence of ATP, 10 times more RecA is required to achieve a comparable level of strand exchange than in the presence of dATP. We propose that dATP binding and hydrolysis as well as SsbA provide different levels of regulation of the dynamic RecA nucleoprotein filament.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/fisiologia , DNA de Cadeia Simples/metabolismo , Recombinases Rec A/fisiologia , Trifosfato de Adenosina/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Recombinases Rec A/metabolismo
15.
BMC Biol ; 5: 14, 2007 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-17391508

RESUMO

BACKGROUND: Bacterial motility is a crucial factor in the colonization of natural environments. Escherichia coli has two flagella-driven motility types: swimming and swarming. Swimming motility consists of individual cell movement in liquid medium or soft semisolid agar, whereas swarming is a coordinated cellular behaviour leading to a collective movement on semisolid surfaces. It is known that swimming motility can be influenced by several types of environmental stress. In nature, environmentally induced DNA damage (e.g. UV irradiation) is one of the most common types of stress. One of the key proteins involved in the response to DNA damage is RecA, a multifunctional protein required for maintaining genome integrity and the generation of genetic variation. RESULTS: The ability of E. coli cells to develop swarming migration on semisolid surfaces was suppressed in the absence of RecA. However, swimming motility was not affected. The swarming defect of a DeltarecA strain was fully complemented by a plasmid-borne recA gene. Although the DeltarecA cells grown on semisolid surfaces exhibited flagellar production, they also presented impaired individual movement as well as a fully inactive collective swarming migration. Both the comparative analysis of gene expression profiles in wild-type and DeltarecA cells grown on a semisolid surface and the motility of lexA1 [Ind-] mutant cells demonstrated that the RecA effect on swarming does not require induction of the SOS response. By using a RecA-GFP fusion protein we were able to segregate the effect of RecA on swarming from its other functions. This protein fusion failed to regulate the induction of the SOS response, the recombinational DNA repair of UV-treated cells and the genetic recombination, however, it was efficient in rescuing the swarming motility defect of the DeltarecA mutant. The RecA-GFP protein retains a residual ssDNA-dependent ATPase activity but does not perform DNA strand exchange. CONCLUSION: The experimental evidence presented in this work supports a novel role for RecA: the promotion of swarming motility. The defective swarming migration of DeltarecA cells does not appear to be associated with defective flagellar production; rather, it seems to be associated with an abnormal flagellar propulsion function. Our results strongly suggest that the RecA effect on swarming motility does not require an extensive canonical RecA nucleofilament formation. RecA is the first reported cellular factor specifically affecting swarming but not swimming motility in E. coli. The integration of two apparently disconnected biologically important processes, such as the maintenance of genome integrity and motility in a unique protein, may have important evolutive consequences.


Assuntos
Escherichia coli K12/fisiologia , Flagelos/fisiologia , Recombinases Rec A/fisiologia , Adenosina Trifosfatases/metabolismo , Escherichia coli K12/crescimento & desenvolvimento , Escherichia coli K12/efeitos da radiação , Teste de Complementação Genética , Proteínas de Fluorescência Verde/genética , Viabilidade Microbiana , Organismos Geneticamente Modificados , Recombinases Rec A/genética , Proteínas Recombinantes/genética , Recombinação Genética , Resposta SOS em Genética/fisiologia
16.
Am J Trop Med Hyg ; 68(6): 692-4, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12887028

RESUMO

Mitochondrial DNA sequences of the 12S and 16S ribosomal RNA genes were analyzed in five natural populations of the Chagas' disease vector Triatoma infestans from Argentina. DNA sequence comparisons of 878 basepairs (12S plus 16S) revealed 13 haplotypes. A total of 10 private haplotypes were found in four of the populations analyzed, suggesting low current levels of genetic exchange. The levels of genetic differentiation between the population of Chancaní (Córdoba) and other two of the populations analyzed indicated significant deviation from a pattern of unrestricted gene flow. The haplotypic diversity and the private haplotypes found in the geographically closest localities of Chancaní and El Jardín (La Rioja) suggest that the reduction in the population size by insecticide treatment did not avoid the recovery of the populations apparently from survivors of the same area.


Assuntos
DNA Mitocondrial/análise , Variação Genética , RNA Ribossômico 16S/genética , RNA Ribossômico/genética , Análise de Sequência de DNA , Triatoma/genética , Animais , Argentina , Genética Populacional , Haplótipos , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...