Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 22(10): 4153-4160, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35435688

RESUMO

Strain is an effective strategy to modulate the optoelectronic properties of 2D materials, but it has been almost unexplored in layered hybrid organic-inorganic metal halide perovskites (HOIPs) due to their complex band structure and mechanical properties. Here, we investigate the temperature-dependent microphotoluminescence (PL) of 2D (C6H5CH2CH2NH3)2Cs3Pb4Br13 HOIP subject to biaxial strain induced by a SiO2 ring platform on which flakes are placed by viscoelastic stamping. At 80 K, we found that a strain of <1% can change the PL emission from a single peak (unstrained) to three well-resolved peaks. Supported by micro-Raman spectroscopy, we show that the thermomechanically generated strain modulates the bandgap due to changes in the octahedral tilting and lattice expansion. Mechanical simulations demonstrate the coexistence of tensile and compressive strain along the flake. The observed PL peaks add an interesting feature to the rich phenomenology of photoluminescence in 2D HOIPs, which can be exploited in tailored sensing and optoelectronic devices.

2.
Nanotechnology ; 31(34): 345203, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32392549

RESUMO

We report on photodetection in deep subwavelength Ge(Sn) nano-islands on Si nano-pillar substrates, in which self-aligned nano-antennas in the Al contact metal are used to enhance light absorption by means of local surface plasmon resonances. The impact of parameters such as substrate doping and device geometry on the measured responsivities are investigated and our experimental results are supported by simulations of the three-dimensional distribution of the electromagnetic fields. Comparatively high optical responsivities of about 0.1 A W-1 are observed as a consequence of the excitation of localized surface plasmons, making our nano-island photodetectors interesting for applications in which size reduction is essential.

3.
ACS Appl Mater Interfaces ; 11(25): 22834-22839, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31142109

RESUMO

InGaN/GaN double heterostructures and multiquantum wells (MQWs) have been successfully developed since more than 20 years for LED lightning applications. Recent developments show that state-of-the-art LEDs benefit from artificially generated V-pit defects. However, the control of structural and chemical properties plays a tremendous role. In this paper, we report on the lateral distribution of V-pit defects and photoluminescence of InGaN/GaN MQWs grown on thick GaN on patterned sapphire substrates. The synchrotron-based scanning X-ray diffraction microscopy technique K-map was employed to locally correlate these properties with the local tilt, strain, and composition of the InGaN/GaN MQW. Compositional fluctuation is the main factor for the variation of photoluminescence intensity and broadening. In turn, V-pit defects align along small-angle grain boundaries and their strain fields are identified as a reason for promoting the InGaN segregation process on a microscale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...