Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(5): 2762-2776, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-34647947

RESUMO

The bioactivity, biological fate and cytotoxicity of nanomaterials when they come into contact with living organisms are determined by their interaction with biomacromolecules and biological barriers. In this context, the role of symmetry/shape anisotropy of both the nanomaterials and biological interfaces in their mutual interaction, is a relatively unaddressed issue. Here, we study the interaction of gold nanoparticles (NPs) of different shapes (nanospheres and nanorods) with biomimetic membranes of different morphology, i.e. flat membranes (2D symmetry, representative of the most common plasma membrane geometry), and cubic membranes (3D symmetry, representative of non-lamellar membranes, found in Nature under certain biological conditions). For this purpose we used an ensemble of complementary structural techniques, including Neutron Reflectometry, Grazing Incidence Small-Angle Neutron Scattering, on a nanometer lengthscale and Confocal Laser Scanning Microscopy on a micrometer length scale. We found that the structural stability of the membrane towards NPs is dependent on the topological characteristic of the lipid assembly and of the NPs, where a higher symmetry gave higher stability. In addition, Confocal Laser Scanning Microscopy analyses highlighted that NPs interact with cubic and lamellar phases according to two distinct mechanisms, related to the different structures of the lipid assemblies. This study for the first time systematically addresses the role of NPs shape in the interaction with lipid assemblies with different symmetry. The results will contribute to improve the fundamental knowledge on lipid interfaces and will provide new insights on the biological function of phase transitions as a response strategy to the exposure of NPs.


Assuntos
Ouro , Nanopartículas Metálicas , Anisotropia , Lipídeos , Espalhamento a Baixo Ângulo
2.
Membranes (Basel) ; 11(7)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34357157

RESUMO

We showcase the combination of experimental neutron scattering data and molecular dynamics (MD) simulations for exemplary phospholipid membrane systems. Neutron and X-ray reflectometry and small-angle scattering measurements are determined by the scattering length density profile in real space, but it is not usually possible to retrieve this profile unambiguously from the data alone. MD simulations predict these density profiles, but they require experimental control. Both issues can be addressed simultaneously by cross-validating scattering data and MD results. The strengths and weaknesses of each technique are discussed in detail with the aim of optimizing the opportunities provided by this combination.

3.
Rev Sci Instrum ; 91(11): 113903, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33261451

RESUMO

In neutron scattering on soft matter, an important concern is the control and stability of environmental conditions surrounding the sample. Complex sample environment setups are often expensive to fabricate or simply not achievable by conventional workshop manufacturing. We make use of state-of-the-art 3D metal-printing technology to realize a sample environment for large sample sizes, optimized for investigations on thin film samples with neutron reflectometry (NR) and grazing-incidence small-angle neutron scattering (GISANS). With the flexibility and freedom of design given by 3D metal-printing, a spherical chamber with fluidic channels inside its walls is printed from an AlSi10Mg powder via selective laser melting (SLM). The thin channels ensure a homogeneous heating of the sample environment from all directions and allow for quick temperature switches in well-equilibrated atmospheres. In order to optimize the channel layout, flow simulations were carried out and verified in temperature switching tests. The spherical, edgeless design aids the prevention of condensation inside the chamber in case of high humidity conditions. The large volume of the sample chamber allows for high flexibility in sample size and geometry. While a small-angle neutron scattering (SANS) measurement through the chamber walls reveals a strong isotropic scattering signal resulting from the evenly orientated granular structure introduced by SLM, a second SANS measurement through the windows shows no additional background originating from the chamber. Exemplary GISANS and NR measurements in time-of-flight mode are shown to prove that the chamber provides a stable, background free sample environment for the investigation of thin films.

4.
J Microsc ; 280(3): 194-203, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32432336

RESUMO

Inorganic nanoparticles (NPs) represent promising examples of engineered nanomaterials, providing interesting biomedical solutions in several fields, like therapeutics and diagnostics. Despite the extensive number of investigations motivated by their remarkable potential for nanomedicinal applications, the interactions of NPs with biological interfaces are still poorly understood. The effect of NPs on living organisms is mediated by biological barriers, such as the cell plasma membrane, whose lateral heterogeneity is thought to play a prominent role in NPs adsorption and uptake pathways. In particular, biological membranes feature the presence of rafts, that is segregated lipid micro and/or nanodomains in the so-called liquid ordered phase (Lo ), immiscible with the surrounding liquid disordered phase (Ld ). Rafts are involved in various biological functions and act as sites for the selective adsorption of materials on the membrane. Indeed, the thickness mismatch present along their boundaries generates energetically favourable conditions for the adsorption of NPs. Despite its clear implications in NPs internalisation processes and cytotoxicity, a direct proof of the selective adsorption of NPs along the rafts' boundaries is still missing to date. Here we use multicomponent supported lipid bilayers (SLBs) as reliable synthetic models, reproducing the nanometric lateral heterogeneity of cell membranes. After being characterised by atomic force microscopy (AFM) and neutron reflectivity (NR), multidomain SLBs are challenged by prototypical inorganic nanoparticles, that is citrated gold nanoparticles (AuNPs), under simplified and highly controlled conditions. By exploiting AFM, we demonstrate that AuNPs preferentially target lipid phase boundaries as adsorption sites. The herein reported study consolidates and extends the fundamental knowledge on NPs-membrane interactions, which constitute a key aspect to consider when designing NPs-related biomedical applications. LAY DESCRIPTION: Inorganic nanoparticles (NPs) represent promising examples of engineered nanomaterials, offering interesting biomedical solutions in multiple fields like therapeutics and diagnostics. Despite being extensively investigated due to their remarkable potential for nanomedicinal applications, the interaction of NPs with biological systems is in several cases still poorly understood. The interaction of NPs with living organisms is mediated by biological barriers, such as the cell plasma membrane. Supported lipid bilayers (SLBs) represent suitable synthetic membrane models for studying the physicochemical properties of natural interfaces and their interaction with inorganic nanomaterials under simplified and controlled conditions. Recently, multicomponent SLBs were developed in order to mimic the lateral heterogeneity of most biological membranes. In particular, biological membranes feature the presence of rafts, that is segregated lipid micro and/or nanodomains, enriched in cholesterol, sphingomyelin, saturated glycerophospholipids and glycosphingolipids: these lipids segregate in the so-called liquid-ordered phase (Lo ), characterised by a high molecular packing degree, which promotes the phase separation from the surrounding liquid-crystalline (disordered, Ld ) phase, where the intermolecular mobility is increased. Rafts are thought to participate in the formation and targeting of nano-sized biogenic lipid vesicles and are also actively involved in multiple membrane processes. Indeed, Lo -Ld phase boundaries represent high energy areas, providing active sites for the preferential adsorption of external material. The selective adsorption of NPs along the phase boundaries of rafted membranes has been theorised and indirectly probed by different research groups; however, a direct proof of this phenomenon is still missing to date. We herein exploit atomic force microscopy (AFM) to directly visualise the preferential adsorption of gold nanoparticles (AuNPs) along the phase boundaries of multicomponent SLBs (previously characterised by neutron reflectivity), obtained from synthetic vesicles containing both an Ld and an Lo phase. The quantitative localisation and morphometry of AuNPs adsorbed on the SLB reveal important information on their interaction with the lipid matrix and directly prove the already theorised differential NPs-lipid interaction at the phase boundaries. The presented results could help the development of future NP-based applications, involving NPs adsorption on membranes with nanoscale phase segregations.


Assuntos
Ouro/química , Bicamadas Lipídicas/química , Microdomínios da Membrana/química , Nanopartículas Metálicas/química , Microscopia de Força Atômica/métodos , Membrana Celular/metabolismo
5.
Phys Chem Chem Phys ; 22(21): 12104-12112, 2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32441277

RESUMO

Deep eutectic solvents (DESs) are both green and sustainable, making them an increasingly attractive alternative to conventional solvents. One of their applications is the electrochemical deposition of metals that cannot be deposited from aqueous solution because of the limited electrochemical window of water. The electrodeposition process is influenced by the structure and dynamics of the solvent at the solid-liquid interface. Therefore,the nanoscale structure of the interface between a silicon substrate and deep eutectic solvent (choline chloride-ethylene glycol) was studied by neutron reflectometry (NR) and molecular dynamics (MD) simulations. It is not possible to model NR measurements of this system without simulating a dense DES layer at the solid-liquid interface. This study used an MD simulation trajectory to extract the density, thickness, and roughness of this DES layer. With this input, the model reproduces the reflectometry data at all measured H/D contrasts very well. The thickness of the layer does not change appreciably when applying charge or at higher temperatures. Further analysis revealed a reorganization of ions and reorientation of the choline cations in the interface layer when the electrodes are charged. These changes in ion orientation are not observed with the NR technique since they do not influence the neutron scattering length density profile due to the high number of ethylene glycol molecules at the interface. However, the agreement between measured neutron reflectometry data and model parameters obtained from MD simulations justified subnanoscale analysis of the MD trajectory and confirmed that these two complementary techniques can be successfully combined to reveal the solid/DES interface structure.

6.
IUCrJ ; 7(Pt 2): 268-275, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32148854

RESUMO

Efficient infiltration of a mesoporous titania matrix with conducting organic polymers or small molecules is one key challenge to overcome for hybrid photovoltaic devices. A quantitative analysis of the backfilling efficiency with time-of-flight grazing incidence small-angle neutron scattering (ToF-GISANS) and scanning electron microscopy (SEM) measurements is presented. Differences in the morphology due to the backfilling of mesoporous titania thin films are compared for the macromolecule poly[4,8-bis-(5-(2-ethyl-hexyl)-thio-phen-2-yl)benzo[1,2-b;4,5-b']di-thio-phene-2,6-diyl-alt-(4-(2-ethyl-hexyl)-3-fluoro-thieno[3,4-b]thio-phene-)-2-carboxyl-ate-2-6-diyl)] (PTB7-Th) and the heavy-element containing small molecule 2-pinacol-boronate-3-phenyl-phen-anthro[9,10-b]telluro-phene (PhenTe-BPinPh). Hence, a 1.7 times higher backfilling efficiency of almost 70% is achieved for the small molecule PhenTe-BPinPh compared with the polymer PTB7-Th despite sharing the same volumetric mass density. The precise characterization of structural changes due to backfilling reveals that the volumetric density of backfilled materials plays a minor role in obtaining good backfilling efficiencies and interfaces with large surface contact.

7.
Sci Rep ; 10(1): 4038, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32132603

RESUMO

Physical properties of nanoclusters, nanostructures and self-assembled nanodots, which in turn are concomitantly dependent upon the morphological properties, can be modulated for functional purposes. Here, in this article, magnetic nanodots of Fe on semiconductor TiO2 nanotubes (TNTs) are investigated with time-of-flight grazing incidence small-angle neutron scattering (TOF-GISANS) as a function of wavelength, chosen from a set of three TNT templates with different correlation lengths. The results are found corroborating with the localized scanning electron microscopy (SEM) images. As we probe the inside and the near-surface region of the Fe-dotted TNTs with respect to their homogeneity, surface distortion and long-range order using TOF-GISANS, gradual aberrations at the top of the near-surface region are identified. Magnetization measurements as a function of temperature and field do not show a typical ferromagnetic behavior but rather a supermagnetic one that is expected from a nonhomogeneous distribution of Fe-dots in the intertubular crevasses.

8.
J Colloid Interface Sci ; 525: 161-165, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29702322

RESUMO

The capillary condensation in bicontinuous microemulsions takes place when two parallel surfaces are narrowed that result in a completely lamellar microemulsion. We expected that this phase transition is also observable when the amount of hydrophilic surfaces from clay particles is raised, because hydrophilic surfaces induce lamellar ordering locally. Using small angle neutron scattering, the structure of microemulsions was observed as a function of clay content. The critical concentration is indicated by discontinuous structural changes and depends on the platelet diameter and is explained by the free energy of the platelets competing with the fluctuating medium. The gel phase transition is observed in the spectroscopic measurements where the diffusion motion is widely suppressed in the gel phase, but otherwise superimposes with the membrane undulations.

9.
Dalton Trans ; 42(48): 16697-708, 2013 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-24121739

RESUMO

In continuation with our studies concerning the synthesis, characterization and biological evaluation of nucleolipidic Ru(III) complexes, a novel design for this family of potential anticancer agents is presented here. As a model compound, a new uridine-based nucleolipid has been prepared, named HoUrRu, following a simple and versatile synthetic procedure, and converted into a Ru(III) salt. Stable formulations of this highly functionalized Ru(III) complex have been obtained by co-aggregation with either the zwitterionic lipid POPC or the cationic DOTAP, which have been subjected to an in-depth microstructural characterization, including DLS, SANS and EPR measurements. The in vitro bioactivity profile of HoUrRu, as a pure compound or in formulation with POPC or DOTAP, reveals high antiproliferative activity against MCF-7 and WiDr human cancer cell lines.


Assuntos
Antineoplásicos/química , Complexos de Coordenação/química , Ácidos Graxos Monoinsaturados/química , Fosfatidilcolinas/química , Compostos de Amônio Quaternário/química , Rutênio/química , Uridina/análogos & derivados , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Desenho de Fármacos , Ácidos Graxos Monoinsaturados/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Fosfatidilcolinas/farmacologia , Compostos de Amônio Quaternário/farmacologia , Rutênio/farmacologia , Uridina/farmacologia
10.
Biomacromolecules ; 14(8): 2549-60, 2013 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-23705931

RESUMO

An efficient drug delivery strategy is presented for novel anticancer amphiphilic ruthenium anionic complexes, based on the formation of stable nanoparticles with the cationic lipid 1,2-dioleyl-3-trimethylammoniumpropane chloride (DOTAP). This strategy is aimed at ensuring high ruthenium content within the formulation, long half-life in physiological media, and enhanced cell uptake. An in-depth microstructural characterization of the aggregates obtained mixing the ruthenium complex and the phospholipid carrier at 50/50 molar ratio is realized by combining a variety of techniques, including dynamic light scattering (DLS), small angle neutron scattering (SANS), neutron reflectivity (NR), electron paramagnetic resonance (EPR), and zeta potential measurements. The in vitro bioactivity profile of the Ru-loaded nanoparticles is investigated on human and non-human cancer cell lines, showing IC(50) values in the low µM range against MCF-7 and WiDr cells, that is, proving to be 10-20-fold more active than AziRu, a previously synthesized NAMI-A analog, used for control. Fluorescence microscopy studies demonstrate that the amphiphilic Ru-complex/DOTAP formulations, added with rhodamine-B, are efficiently and rapidly incorporated in human MCF-7 breast adenocarcinoma cells. The intracellular fate of the amphiphilic Ru-complexes was investigated in the same in vitro model by means of an ad hoc designed fluorescently tagged analog, which exhibited a marked tendency to accumulate within or in proximity of the nuclei.


Assuntos
Antineoplásicos/química , Complexos de Coordenação/química , Lipossomos/química , Rutênio/química , Compostos Alílicos/química , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Coloides , Complexos de Coordenação/metabolismo , Complexos de Coordenação/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Estabilidade de Medicamentos , Espectroscopia de Ressonância de Spin Eletrônica , Meia-Vida , Humanos , Concentração Inibidora 50 , Lipídeos/química , Lipossomos/metabolismo , Lipossomos/farmacologia , Células MCF-7 , Nanopartículas/química , Difração de Nêutrons , Tamanho da Partícula , Rutênio/metabolismo , Rutênio/farmacologia , Espalhamento a Baixo Ângulo , Tensoativos/química
12.
J Phys Chem B ; 117(3): 741-9, 2013 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-23276326

RESUMO

Mutual diffusion coefficients have been measured for several average compositions of the system sodium cholate-sodium deoxycholate-water at 25 °C. The experiments have been grouped in different sets having constant concentration of one component and variable concentration of the other one. Following this approach, it has been found that the trends of the main- and cross-term diffusion coefficients can be interpreted on the basis of the diffusion and equilibrium results of similar experiments performed on the two binary systems sodium cholate-water and sodium deoxycholate-water. Implications of the presented results in the transport of lipids operated by bile salt aggregates are mentioned. The method proposed in this work, able to connect the diffusivities of an n-component system to those of the related n-1 subsystems, can be extended to obtain qualitative prediction on the diffusion coefficient trends for mixtures of other surfactants, of both industrial and biological interest.


Assuntos
Ácidos e Sais Biliares/química , Absorção , Ácidos e Sais Biliares/análise , Ácido Desoxicólico/química , Difusão , Micelas , Colato de Sódio/química , Tensoativos/química , Água/química
13.
J Pept Sci ; 19(4): 190-7, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23355401

RESUMO

The synthesis, formulation and a complete physico-chemical characterization, by dynamic light scattering and small angle neutron scattering techniques, of new liposomal aggregates obtained by co-assembling an amphiphilic molecule containing a platinum complex, Peg1500 -Lys(Pt-aminoEtGly)-Lys(C18)2, (abbreviated as (C18)2-PKAG-Pt), with a second amphiphilic monomer, (C18H37)2NCO(CH2)2CO(AdOO)5-Oct ((C18)2 L5-Oct), containing the octreotide bioactive peptide, is reported. Liposomes of (C18)2-PKAG-Pt present a radius of 48 nm, whereas the mixed aggregates (C18)2-PKAG-Pt/(C18)2L5-Oct at 90/10 M ratio give larger liposomes with a radius of 84 nm. In both cases, the bilayer thickness is ~5.3 nm. Encapsulation of doxorubicin in mixed liposomes is also obtained by using the pH gradient method. The obtained liposomes could represent a new target selective cargo system for delivery of cisplatin based drugs and/or doxorubicin on cells overexpressing the sstr2 and sstr5 somatostatin receptors.


Assuntos
Antibióticos Antineoplásicos/química , Antineoplásicos Hormonais/química , Cisplatino/química , Doxorrubicina/química , Sistemas de Liberação de Medicamentos , Octreotida/química , Platina/química , Lipossomos/química , Receptores de Somatostatina/agonistas
14.
Biomacromolecules ; 13(8): 2379-90, 2012 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-22651227

RESUMO

Establishing structure-property relationships in the black insoluble eumelanins, the key determinants of human pigmentation and skin photoprotective system, is a considerable conceptual and experimental challenge in the current drive for elucidation of the biological roles of these biopolymers and their application as advanced materials for organoelectronics. Herein, we report a new breakthrough toward this goal by the first detailed investigation on the nanoscale level of the oxidative polymerization of 5,6-dihydroxyindole (DHI), a model process of eumelanin synthesis. On the basis of a combined use of spectrophotometry, dynamic light scattering (DLS), and small-angle neutron scattering (SANS) investigations, it was possible to unveil the dynamics of the aggregation process before precipitation, the key relationships with visible light absorption and the shape of fundamental aggregates. The results indicated a polymerization mechanism of the type: Polymer(n) + DHI(x) = Polymer(n+x), where DHI(x) indicates monomer, dimer, or low oligomers (x ≤ 5). During polymerization, visible absorption increases rapidly, reaching a plateau. Particle growth proceeds slowly, with formation of 2-D structures ~55 nm thick, until precipitation occurs, that is, when large aggregates with a maximum hydrodynamic radius (R(h)) of ~1200 nm are formed. Notably, markedly smaller R(h) values, up to ~110 nm, were determined in the presence of poly(vinyl alcohol) (PVA) that was shown to be an efficient aggregation-preventing agent for polymerizing DHI ensuring water solubilization. Finally, it is shown that DHI monomer can be efficiently and partially irreversibly depleted from aqueous solutions by the addition of eumelanin suspensions. This behavior is suggested to reflect oxidant-independent competing pathways of polymer synthesis and buildup via monomer conversion on the active aggregate surface contributing to particle growth. Besides filling crucial gaps in DHI polymerization, these results support the attractive hypothesis that eumelanins may behave as a peculiar example of living biopolymers. The potential of PVA as a powerful tool for solution chemistry-based investigations of eumelanin supramolecular organization and for technological manipulation purposes is underscored.


Assuntos
Indóis/química , Melaninas/síntese química , Polimerização , Algoritmos , Biomimética , Biopolímeros/química , Luz , Melaninas/química , Modelos Químicos , Nanopartículas/química , Difração de Nêutrons , Oxirredução , Tamanho da Partícula , Álcool de Polivinil/química , Espalhamento de Radiação , Espalhamento a Baixo Ângulo
15.
Bioconjug Chem ; 23(4): 758-70, 2012 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-22369596

RESUMO

A novel ruthenium complex, linked to a cholesterol-containing nucleolipid (named ToThyCholRu), stabilized by lipid aggregates for antineoplastic therapy is presented. In order to retard the degradation kinetics typically observed for several ruthenium-based antineoplastic agents, ToThyCholRu is incorporated into a liposome bilayer formed by POPC. The resulting nanoaggregates contain up to 15% in moles of the ruthenium complex, and are shown to be stable for several weeks. The liposomes host the ruthenium-nucleolipid complex with the metal ion surrounded by POPC lipid headgroups and the steroid moiety inserted in the more external acyl chain region. These ruthenium-containing liposomes are more effective in inhibiting the growth of cancer cells than a model NAMI-A-like ruthenium complex, prepared for a direct evaluation of their anti-proliferative activity. These results introduce new perspectives in the design of innovative transition-metal-based supramolecular systems for anticancer drug vectorization.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Colesterol/química , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Rutênio/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Estabilidade de Medicamentos , Humanos , Difração de Nêutrons , Espalhamento a Baixo Ângulo
16.
Biomaterials ; 33(14): 3770-82, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22357152

RESUMO

A new organometallic ruthenium complex, named AziRu, along with three amphiphilic nucleoside-based ruthenium complexes, ToThyRu, HoThyRu and DoHuRu, incorporating AziRu in their skeleton, have been synthesized, stabilized in POPC phospholipid formulations and studied for their antineoplastic activity. Self-aggregation behavior of these complexes was investigated, showing that the three synthesized AziRu derivatives able to form liposomes and, under specific conditions, elongated micelles. The formulations prepared in POPC proved to be stable for months and showed high in vitro antiproliferative activity. The here described results open new scenarios in the design of innovative transition metal-based supramolecular systems for anticancer drugs vectorization.


Assuntos
Antineoplásicos/administração & dosagem , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Compostos Organometálicos/administração & dosagem , Rutênio/administração & dosagem , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos , Estabilidade de Medicamentos , Humanos , Lipossomos , Teste de Materiais , Microscopia de Fluorescência , Nanopartículas/química , Compostos Organometálicos/química , Ratos , Rutênio/química
17.
Mol Biosyst ; 7(11): 3075-86, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21897988

RESUMO

Novel thymidine- or uridine-based nucleolipids, containing one hydrophilic oligo(ethylene glycol) chain and one or two oleic acid residues (called ToThy, HoThy and DoHu), have been synthesized with the aim to develop bio-compatible nanocarriers for drug delivery and/or produce pro-drugs. Microstructural characterization of their aggregates has been determined in pure water and in pseudo-physiological conditions through DLS and SANS experiments. In all cases stable vesicles, with mean hydrodynamic radii ranging between 120 nm and 250 nm have been revealed. Biological validation of the nucleolipidic nanocarriers was ensured by evaluation of their toxicological profiles, performed by administration of the nanoaggregates to a panel of different cell lines. ToThy exhibited a weak cytotoxicity and, at high concentration, some ability to interfere with cell viability and/or proliferation. In contrast, DoHu and HoThy exhibited no toxicological relevance, behaving similarly to POPC-based liposomes, widely used for systemic drug delivery. Taken together, these results show nucleolipid-based nanocarriers as finely tunable, multi-functional self-assembling materials of interest for the in vivo transport of biomolecules or drugs.


Assuntos
Portadores de Fármacos/síntese química , Nanocápsulas/química , Ácidos Oleicos/síntese química , Timidina/análogos & derivados , Uridina/análogos & derivados , Células 3T3-L1 , Animais , Células CACO-2 , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/química , Portadores de Fármacos/toxicidade , Sistemas de Liberação de Medicamentos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Ácidos Oleicos/química , Ácidos Oleicos/toxicidade , Pró-Fármacos/síntese química , Pró-Fármacos/química , Ratos , Timidina/síntese química , Timidina/química , Timidina/toxicidade , Uridina/síntese química , Uridina/química , Uridina/toxicidade
18.
Phys Chem Chem Phys ; 13(35): 15906-17, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21826348

RESUMO

Sodium cholate (NaC) and sodium deoxycholate (NaDC) in binary and ternary aqueous mixtures were investigated by means of surface tension, electron paramagnetic resonance spectroscopy (EPR), small angle neutron scattering (SANS) and mutual diffusion coefficient analysis. Concerning the NaC-H(2)O and NaDC-H(2)O binary mixtures, the surface tension, EPR and diffusion measurements confirmed the formation of micelles above a well detectable critical concentration. The SANS data indicated for both systems, the formation of ellipsoidal micelles whose major axis increased with concentration and minor axis remained constant. The data were interpreted under the assumption that aggregate growth occurred via hydrogen bonding of small aggregates along one preferential direction. For the NaC-NaDC-H(2)O ternary mixtures, the surface tension and EPR results were in good agreement with the Clint model prediction for the ideal mixed micellization. Based on this model, the SANS data enabled a complete description of the mixed aggregates in terms of dimensions, composition and concentration. In turn, this strategy allowed for a satisfactory interpretation of the main and cross-term diffusion coefficient trends, which are quite complex.


Assuntos
Ácido Desoxicólico/química , Colato de Sódio/química , Água/química , Difusão , Espectroscopia de Ressonância de Spin Eletrônica , Difração de Nêutrons , Espalhamento a Baixo Ângulo , Tensão Superficial
19.
J Colloid Interface Sci ; 359(1): 179-88, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21497823

RESUMO

The micro- and mesoscopic structure of reverse Pluronic 25R4 in aqueous mixtures has been studied by SANS, SAXS and shear rheology. These techniques have been able to give a deep insight into the complex structure of the system phase diagram, that includes an isotropic water-rich liquid phase L(1), and liquid crystalline phases with hexagonal, E, or lamellar order, D. Particular attention has been paid to the isotropic water-rich phase L(1), which has a large stability region in the temperature-composition phase diagram. This region is crossed by a large "cloudy zone". Below it, namely at low temperature and composition, SANS data show the presence of polymer unimers in a gaussian coil conformation. Above the "cloudy zone", at higher temperature and composition, the L(1) phase is structured as a network of interconnected multimeric micelles. Rheology adds information about the structuring of the L(1) phase showing its incipient hexagonal pre-structuring. This technique is also able to highlight the defective structure of the E phase itself. In the temperature and concentration ranges in which a lamellar phase D is present, SANS and SAXS results are in complete agreement, showing how interlamellar distance is influenced by both polymer composition and temperature according to an "ideal deswelling" or a "not ideal swelling" mechanism. In addition, in the D phase rheology suggests the presence of densely packed vesicles.


Assuntos
Polietilenoglicóis/química , Propilenoglicóis/química , Temperatura , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Propriedades de Superfície , Água/química
20.
IUBMB Life ; 63(5): 346-54, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21491556

RESUMO

In vitro, and possibly in vivo, hemoglobin polymerization and red blood cell sickling appear to be widespread in codfish. In this article, we show that the hemoglobins of the two Arctic fish Lycodes reticulatus and Gadus morhua also have the tendency to polymerize, as monitored by dynamic light scattering experiments. The elucidation of the primary structure of the single hemoglobin of the zoarcid L. reticulatus shows the presence of a large number of cysteyl residues in α and ß chains. Their role in eliciting the ability to produce polymers was also addressed by MALDI-TOF and TOF-TOF mass spectrometry. The G.morhua globins are also rich in Cys, but unlike in L. reticulatus, polymerization does not seem to be disulfide driven. The widespread occurrence of the polymerization phenomenon displayed by hemoglobins of Arctic fish supports the hypothesis that this feature may bea response to stressful environmental conditions.


Assuntos
Gadus morhua , Hemoglobinas/química , Conformação Proteica , Sequência de Aminoácidos , Animais , Regiões Árticas , Hemoglobinas/genética , Hemoglobinas/metabolismo , Humanos , Dados de Sequência Molecular , Oxigênio/metabolismo , Polimerização , Alinhamento de Sequência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...