Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 926: 171912, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38522545

RESUMO

The assessment of chemical pollution in free-ranging living mammals is viable using remote biopsies and portrays a comprehensive scenario of environmental health. The Southwestern Atlantic Ocean holds incredible biodiversity, but it is under the constant and invisible threat of persistent organic pollutants (POPs) of anthropogenic origin, such as pesticides, brominated flame retardants, and industrial-use compounds (e.g., PCBs). Thus, this study aimed to assess the bioaccumulation of POPs (PCBs, DDTs, HCB, mirex and PBDEs) and natural organobromine compounds (MeO-BDEs) using gas-chromatography coupled to mass spectrometry in biopsy samples of Atlantic spotted dolphins (Stenella frontalis, n = 20) that inhabit and forage both inside and in adjacent areas to degraded (Guanabara Bay) and conserved (Ilha Grande Bay) coastal bays in the Southeastern Brazil. Among the studied compounds, PCBs were predominant in the contamination profile with median concentration of 97.0 µg.g-1 lipid weight (lw), followed by the sum of the p,p' isomers of DDT, DDD, and DDE of 11.0 µg.g-1 lw, the brominated flame retardants PBDEs of 1.6 µg.g-1 lw, and the other organochlorine pesticides mirex of 0.78 µg.g-1 lw, and HCB of 0.049 µg.g-1 lw. The MeO-BDEs were detected with a median concentration of 22.8 µg.g-1 lw. 85 % of the Atlantic spotted dolphins analyzed in this study presented PCB concentration that exceeded even the less conservative threshold limits for adverse health effects (41 µg.g-1 lw). This study shows that despite the conservation status of preserved bays, cetacean species foraging in these locations are still under increased threat. Hence chemical pollution demands local and global efforts to be mitigated.


Assuntos
Retardadores de Chama , Hidrocarbonetos Clorados , Praguicidas , Bifenilos Policlorados , Stenella , Poluentes Químicos da Água , Animais , Stenella/metabolismo , Bifenilos Policlorados/análise , Mirex , Éteres Difenil Halogenados/análise , Retardadores de Chama/análise , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos Clorados/análise , Praguicidas/análise , Cetáceos/metabolismo , Monitoramento Ambiental , Poluentes Químicos da Água/análise
2.
Chemosphere ; 345: 140456, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839740

RESUMO

Kogia sima and Kogia breviceps are apex predators of mesopelagic trophic webs being far from most anthropogenic threats. However, chemical pollutants and naturally synthesized compounds may travel long distances. This study aimed to use kogiid whales as sentinels of mesopelagic trophic webs in the Southwestern Atlantic Ocean. Persistent organic pollutants (POPs), e.g., polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT) and metabolites, mirex, hexachlorobenzene (HCB), polybrominated diphenylethers (PBDEs), pentabromoethylbenzene (PBEB) and hexabromobenzene (HBB), and the naturally produced methoxylated BDE (MeO-BDEs) were determined in the blubber of 16 K. sima and 15 K. breviceps. Among the organochlorine compounds, DDTs were the main group found in K. sima and in K. breviceps (1636.6 and 3983.3 ng g-1 lw, respective medians), followed by PCBs (425.9 and 956.1 ng g-1 lw, respectively), mirex (184.1 and 375.6 ng g-1 lw, respectively), and HCB (132.4 and 340.3 ng g-1 lw, respectively). As for the organobromine, the natural MeO-BDEs were predominant (1676.7 and 501.6 ng g-1 lw, respectively), followed by PBDEs (13.6 and 10.3 ng g-1 lw, respectively) and PBEB (2.2 and 2.9 ng g-1 lw, respectively). In general, POPs concentration was higher in K. breviceps than in K. sima. Conversely, MeO-BDEs concentration was higher in K. sima than in K. breviceps. Differences in concentrations in these sympatric odontocetes were attributed to distinct species, sampling sites, and biological parameters and suggest some level of niche segregation. It is noteworthy the long-range reach and bioaccumulation of these synthetic compounds in an unexplored habitat, that present an increasing economic interest.


Assuntos
Poluentes Ambientais , Bifenilos Policlorados , Poluentes Químicos da Água , Animais , Bifenilos Policlorados/análise , Baleias/metabolismo , Hexaclorobenzeno/metabolismo , Mirex , Éteres Difenil Halogenados/análise , Bioacumulação , Poluentes Ambientais/metabolismo , Oceano Atlântico , Monitoramento Ambiental , Poluentes Químicos da Água/análise
3.
Chemosphere ; 338: 139496, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37451642

RESUMO

Mercury is a metal of toxicological importance that occurs naturally. However, its concentration can be affected by anthropogenic activities and has the potential to bioaccumulate and biomagnify in food webs. Thus, knowing how its concentration varies along the trophic levels allows us to understand its potential risks to the biota. The present study aimed to investigate mercury transfer through the Stenella frontalis food web in Ilha Grande Bay (IGB), Rio de Janeiro state, Brazil. Samples of muscle and liver of S. frontalis were obtained from carcasses (n = 8) found stranded in the IGB, and its potential prey species were collected in fishing landings in the same Bay (n = 145). Total mercury (THg) concentrations were determined by atomic absorption spectrometry, and the δ15N was determined by an isotope ratio mass spectrometer. To investigate how trophic transfer affects mercury contamination in biota, six linear models were applied between THg logarithmic concentrations and δ15N or trophic position (TP). The trophic magnification factor (TMF) was calculated from each model to estimate the trophic transfer. Mean THg concentration in S. frontalis was higher in the liver than in muscle, but no correlation was found with age and δ15N values. Instead, the hepatic and muscular THg concentrations positively correlated with the trophic position. In the summer, THg concentration, TP, and δ15N values in prey species varied significantly, as well as in the winter, except for THg concentration. All trophic transfer models were significant in both seasons, and the TMF >1. The present study showed that trophic transfer is an essential factor in mercury biomagnification in both seasons but is not the unique driver. Both δ15N and TP could explain mercury trophic transfer, but TP better integrates metabolic diversity and seasonality.


Assuntos
Golfinhos , Mercúrio , Stenella , Poluentes Químicos da Água , Animais , Mercúrio/análise , Stenella/metabolismo , Bioacumulação , Golfinhos/metabolismo , Brasil , Cadeia Alimentar , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Peixes/metabolismo
4.
Chemosphere ; 323: 138237, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36863632

RESUMO

Organic contaminants with toxic effects, like the conventional brominated flame retardants (BFRs) and BFRs of emergent concern, and their synergistic effects with other micropollutants, can be an additional threat to delphinids. Rough-toothed dolphins (Steno bredanensis) populations strongly associated with coastal environments already face a potential risk of decline due to high exposure to organochlorine pollutants. Moreover, natural organobromine compounds are important indicators of the environment's health. Polybrominated diphenyl ethers (PBDEs), pentabromoethylbenzene (PBEB), hexabromobenzene (HBB) and the methoxylated PBDEs (MeO-BDEs) were determined in the blubber of rough-toothed dolphins from three ecological populations from the Southwestern Atlantic Ocean (Southeastern, Southern and Outer Continental Shelf/Southern populations, SE, S, and OCS/S, respectively). The profile was dominated by the naturally produced MeO-BDEs (mainly 2'-MeO-BDE 68 and 6-MeO-BDE 47), followed by the anthropogenic BFRs PBDEs (mainly BDE 47). Median ΣMeO-BDE concentrations varied between 705.4 and 3346.0 ng g-1 lw among populations and ΣPBDE from 89.4 until 538.0 ng g-1 lw. Concentrations of anthropogenic organobromine compounds (ΣPBDE, BDE 99 and BDE 100) were higher in SE population than in OCS/S, indicating a coast - ocean gradient of contamination. Negative correlations were found between the concentration of the natural compounds and age, suggesting their metabolization and/or biodilution and maternal transference. Conversely, positive correlations were found between the concentrations of BDE 153 and BDE 154 and age, indicating low biotransformation capability of these heavy congeners. The levels of PBDEs found are concerning, particularly for SE population, because they are similar to concentrations known for the onset of endocrine disruption in other marine mammals and may be an additional threat to a population in a hotspot for chemical pollution.


Assuntos
Golfinhos , Retardadores de Chama , Poluentes Químicos da Água , Animais , Golfinhos/metabolismo , Éteres Difenil Halogenados/análise , Poluentes Químicos da Água/análise , Oceano Atlântico , Monitoramento Ambiental , Retardadores de Chama/análise
5.
Environ Pollut ; 306: 119370, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35526646

RESUMO

On November 5th, 2015, the Fundão dam collapsed in Minas Gerais, southeastern Brazil, releasing millions of cubic meters of mud containing mining residue into the Doce River. Two weeks later, the mud arrived to the marine environment, triggering changes in franciscana dolphin habitat, Pontoporia blainvillei, from Franciscana Management Area Ia. This is an isolated population of the most endangered cetacean species in the South Atlantic Ocean. Organohalogen compounds (OHCs) may pose a threat to this endangered population because of their endocrine disrupting properties. Hence, this study sought to determine if there were differences in the bioaccumulation profile of OHC (PCBs, DDTs, Mirex, HCB, HCHs, PBDEs, PBEB, HBBZ and MeO-BDEs) in franciscana dolphins before and after dam collapse and to build a temporal trend. Blubber of 33 stranded individuals was collected in Espírito Santo state for organohalogen assessment between 2003 and 2019. Differences were found between franciscana dolphins collected prior to and after the disaster. Additionally, significant temporal trends for organochlorine pesticides and natural and anthropogenic organobromine were detected. The increase in pesticide concentrations after 2015 is suggestive of their reavailability in the environment. The decline in organobromine over time could be due to their debromination in the marine environment and alterations in the composition of their natural producers. PCBs remained stable during the period of the study. Our findings show an increase in endocrine disruptor concentrations, which is of great concern for this endangered population.


Assuntos
Desastres , Golfinhos , Praguicidas , Bifenilos Policlorados , Poluentes Químicos da Água , Animais , Brasil , Monitoramento Ambiental , Mineração , Bifenilos Policlorados/análise , Poluentes Químicos da Água/análise
6.
Environ Sci Technol ; 55(22): 15149-15161, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34726395

RESUMO

Rough-toothed dolphins, Steno bredanensis, are closely associated with coastal waters in the Southwestern Atlantic Ocean, increasing the exposure to multiple stressors, such as chemical pollution. Persistent organic pollutants (POPs) are known to affect the health of cetacean species. To comprehend the potential impacts of POPs on populations' viability, it is necessary to distinguish populations and predict their risk of long-term exposure. Blubbers of rough-toothed dolphins (n = 28) collected along the southeastern (SE) and southern (S) Brazilian coast were screened for polychlorinated biphenyls (PCBs) and pesticides in a gas chromatograph coupled to a mass spectrometer. Based on the contamination profile, a discriminant function analysis separated the rough-toothed dolphins into three ecological populations: two coastal and one offshore. POP concentrations were the highest reported for the species worldwide and highest among the delphinids in Brazilian waters, reaching 647.9 µg g-1 lw for PCBs. The SE population presented 212.9 ± 163.0, S population presented 101.0 ± 96.7, and OCS/S population presented 183.3 ± 85.3 µg g-1 lw (mean ± SD) of PCBs. The potential risk of effects triggered by elevated PCB concentrations was assessed in an individual-based model. A risk of severe decline in population size is projected for the three populations in the next 100 years, especially in SE Brazil, varying between 67 and 99%.


Assuntos
Golfinhos , Poluentes Ambientais , Bifenilos Policlorados , Animais , Oceano Atlântico , Monitoramento Ambiental , Bifenilos Policlorados/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...