Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Clin Chem ; 70(1): 190-205, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175600

RESUMO

BACKGROUND: Epithelial-mesenchymal transition (EMT) is often linked with carcinogenesis. However, EMT is also important for embryo development and only reactivates in cancer. Connecting how EMT occurs during embryonic development and in cancer could help us further understand the root mechanisms of cancer diseases. CONTENT: There are key regulatory elements that contribute to EMT and the induction and maintenance of stem cell properties during embryogenesis, tissue regeneration, and carcinogenesis. Here, we explore the implications of EMT in the different stages of embryogenesis and tissue development. We especially highlight the necessity of EMT in the mesodermal formation and in neural crest cells. Through EMT, these cells gain epithelial-mesenchymal plasticity (EMP). With this transition, crucial morphological changes occur to progress through the metastatic cascade as well as tissue regeneration after an injury. Stem-like cells, including cancer stem cells, are generated from EMT and during this process upregulate factors necessary for stem cell maintenance. Hence, it is important to understand the key regulators allowing stem cell awakening in cancer, which increases plasticity and promotes treatment resistance, to develop strategies targeting this cell population and improve patient outcomes. SUMMARY: EMT involves multifaceted regulation to allow the fluidity needed to facilitate adaptation. This regulatory mechanism, plasticity, involves many cooperating transcription factors. Additionally, posttranslational modifications, such as splicing, activate the correct isoforms for either epithelial or mesenchymal specificity. Moreover, epigenetic regulation also occurs, such as acetylation and methylation. Downstream signaling ultimately results in the EMT which promotes tissue generation/regeneration and cancer progression.


Assuntos
Epigênese Genética , Neoplasias , Feminino , Gravidez , Humanos , Transição Epitelial-Mesenquimal , Células-Tronco , Carcinogênese
2.
Cell Rep ; 42(12): 113470, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37979166

RESUMO

Epithelial-mesenchymal transition (EMT) empowers epithelial cells with mesenchymal and stem-like attributes, facilitating metastasis, a leading cause of cancer-related mortality. Hybrid epithelial-mesenchymal (E/M) cells, retaining both epithelial and mesenchymal traits, exhibit heightened metastatic potential and stemness. The mesenchymal intermediate filament, vimentin, is upregulated during EMT, enhancing the resilience and invasiveness of carcinoma cells. The phosphorylation of vimentin is critical to its structure and function. Here, we identify that stabilizing vimentin phosphorylation at serine 56 induces multinucleation, specifically in hybrid E/M cells with stemness properties but not epithelial or mesenchymal cells. Cancer stem-like cells are especially susceptible to vimentin-induced multinucleation relative to differentiated cells, leading to a reduction in self-renewal and stemness. As a result, vimentin-induced multinucleation leads to sustained inhibition of stemness properties, tumor initiation, and metastasis. These observations indicate that a single, targetable phosphorylation event in vimentin is critical for stemness and metastasis in carcinomas with hybrid E/M properties.


Assuntos
Carcinoma , Filamentos Intermediários , Humanos , Vimentina/metabolismo , Fosforilação , Filamentos Intermediários/metabolismo , Filamentos Intermediários/patologia , Carcinoma/patologia , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Metástase Neoplásica/patologia
3.
Semin Cancer Biol ; 95: 120-139, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37572731

RESUMO

Cancer cells adapt to varying stress conditions to survive through plasticity. Stem cells exhibit a high degree of plasticity, allowing them to generate more stem cells or differentiate them into specialized cell types to contribute to tissue development, growth, and repair. Cancer cells can also exhibit plasticity and acquire properties that enhance their survival. TGF-ß is an unrivaled growth factor exploited by cancer cells to gain plasticity. TGF-ß-mediated signaling enables carcinoma cells to alter their epithelial and mesenchymal properties through epithelial-mesenchymal plasticity (EMP). However, TGF-ß is a multifunctional cytokine; thus, the signaling by TGF-ß can be detrimental or beneficial to cancer cells depending on the cellular context. Those cells that overcome the anti-tumor effect of TGF-ß can induce epithelial-mesenchymal transition (EMT) to gain EMP benefits. EMP allows cancer cells to alter their cell properties and the tumor immune microenvironment (TIME), facilitating their survival. Due to the significant roles of TGF-ß and EMP in carcinoma progression, it is essential to understand how TGF-ß enables EMP and how cancer cells exploit this plasticity. This understanding will guide the development of effective TGF-ß-targeting therapies that eliminate cancer cell plasticity.


Assuntos
Carcinoma , Fator de Crescimento Transformador beta , Humanos , Fator de Crescimento Transformador beta/metabolismo , Transição Epitelial-Mesenquimal/genética , Citocinas , Transdução de Sinais , Microambiente Tumoral
4.
iScience ; 26(4): 106482, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37091228

RESUMO

Extracellular vesicles (EVs) regulate the tumor microenvironment by facilitating transport of biomolecules. Despite extensive investigation, heterogeneity in EV secretion among cancer cells and the mechanisms that support EV secretion are not well characterized. We developed an integrated method to identify individual cells with differences in EV secretion and performed linked single-cell RNA-sequencing on cloned single cells from the metastatic breast cancer cells. Differential gene expression analyses identified a four-gene signature of breast cancer EV secretion: HSP90AA1, HSPH1, EIF5, and DIAPH3. We functionally validated this gene signature by testing it across cell lines with different metastatic potential in vitro. Analysis of the TCGA and METABRIC datasets showed that this signature is associated with poor survival, invasive breast cancer types, and poor CD8+ T cell infiltration in human tumors. We anticipate that our method for directly identifying the molecular determinants of EV secretion will have broad applications across cell types and diseases.

5.
Pharmacol Ther ; 242: 108344, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36632846

RESUMO

Precision oncology informed by genomic information has evolved in leaps and bounds over the last decade. Although non-small cell lung cancer (NSCLC) has moved to center-stage as the poster child of precision oncology, multiple targetable genomic alterations have been identified in various cancer types. RET alterations occur in roughly 2% of all human cancers. The role of RET as oncogenic driver was initially identified in 1985 after the discovery that transfection with human lymphoma DNA transforms NIH-3T3 fibroblasts. Germline RET mutations are causative of multiple endocrine neoplasia type 2 syndrome, and RET fusions are found in 10-20% of papillary thyroid cases and are detected in most patients with advanced sporadic medullary thyroid cancer. RET fusions are oncogenic drivers in 2% of Non-small cell lung cancer. Rapid translation and regulatory approval of selective RET inhibitors, selpercatinib and pralsetinib, have opened up the field of RET precision oncology. This review provides an update on RET precision oncology from bench to bedside and back. We explore the impact of selective RET inhibitor in patients with advanced NSCLC, thyroid cancer, and other cancers in a tissue-agnostic fashion, resistance mechanisms, and future directions.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Neoplasias da Glândula Tireoide , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Medicina de Precisão , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética
6.
Semin Cancer Biol ; 87: 17-31, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36354098

RESUMO

Metastatic cancer is almost always terminal, and more than 90% of cancer deaths result from metastatic disease. Combating cancer metastasis and post-therapeutic recurrence successfully requires understanding each step of metastatic progression. This review describes the current state of knowledge of the etiology and mechanism of cancer progression from primary tumor growth to the formation of new tumors in other parts of the body. Open questions, avenues for future research, and therapeutic approaches with the potential to prevent or inhibit metastasis through personalization to each patient's mutation and/or immune profile are also highlighted.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias , Humanos , Transição Epitelial-Mesenquimal/genética , Neoplasias/genética , Neoplasias/patologia , Metástase Neoplásica
7.
Nat Commun ; 13(1): 4975, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008376

RESUMO

More than 70% of human breast cancers (BCs) are estrogen receptor α-positive (ER+). A clinical challenge of ER+ BC is that they can recur decades after initial treatments. Mechanisms governing latent disease remain elusive due to lack of adequate in vivo models. We compare intraductal xenografts of ER+ and triple-negative (TN) BC cells and demonstrate that disseminated TNBC cells proliferate similarly as TNBC cells at the primary site whereas disseminated ER+ BC cells proliferate slower, they decrease CDH1 and increase ZEB1,2 expressions, and exhibit characteristics of epithelial-mesenchymal plasticity (EMP) and dormancy. Forced E-cadherin expression overcomes ER+ BC dormancy. Cytokine signalings are enriched in more active versus inactive disseminated tumour cells, suggesting microenvironmental triggers for awakening. We conclude that intraductal xenografts model ER + BC dormancy and reveal that EMP is essential for the generation of a dormant cell state and that targeting exit from EMP has therapeutic potential.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
8.
Eur J Med Chem ; 242: 114638, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36001933

RESUMO

Epithelial-mesenchymal transition (EMT) endows stem cell-like properties to cancer cells. Targeting this process represents a potential therapeutic approach to overcome cancer metastasis and chemotherapy resistance. FiVe1 was identified from an EMT-based synthetic lethality screen and was found to inhibit the stem cell-like properties and proliferation of not only cancer cells undergoing EMT, but also more broadly in mesenchymal cancers that include therapeutically intractable soft tissue sarcomas. FiVe1 functions by directly binding to the type III intermediate filament protein vimentin (VIM) in a mode that induces hyperphosphorylation of Ser56, which results in selective disruption of mitosis and induced multinucleation in transformed VIM-expressing mesenchymal cancer cell types. Cell-based potency (IC50 = 1.6 µM, HT-1080 fibrosarcoma), poor solubility (<1 µM) and low oral bioavailability limits the direct application of FiVe1 as an in vivo probe or therapeutic agent. To overcome these drawbacks, we performed structure-activity relationship (SAR) studies and synthesized a set of 35 new compounds, consisting of diverse modifications of the FiVe1 scaffold. Among these compounds, 4e showed a marked improvement in potency (IC50 = 44 nM, 35-fold improvement, HT-1080) and cell type selectivity (19-fold improvement), when compared to FiVe1. Improvements in the potency of 4e, in terms of overall cytotoxicity, directly correlate with VIM Ser56 phosphorylation status and the oral bioavailability and pharmacokinetic profiles of 4e in mouse are superior to FiVe1. Successful optimization also resulted in potent and selective derivatives 11a, 11j and 11k, which exhibited superior pharmacological profiles, in terms of metabolic stability and aqueous solubility. Collectively, these optimization efforts have resulted in the development of promising FiVe1 analogs with potential applications in the treatment of mesenchymal cancers, as well as in the study of VIM-related biology.


Assuntos
Transição Epitelial-Mesenquimal , Sarcoma , Animais , Linhagem Celular Tumoral , Camundongos , Mitose , Fosforilação , Vimentina/genética
9.
Methods Mol Biol ; 2429: 501-507, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35507184

RESUMO

Cancer stem cells (CSCs) are a small subpopulation of self-renewing cancer cells that are present within tumors. CSCs possess tumor initiation potential as well as the ability to resist toxic compounds and chemotherapeutic agents through the upregulation of drug efflux transporters, DNA repair pathways, and survival cascades. Accumulating evidence suggests that CSCs are responsible for tumor relapse and resistance to chemotherapeutic agents and that targeting CSCs is critical to inhibition of cancer progression. Therefore, isolation and characterization of CSCs is important in studying tumor initiation and progression. In this chapter, we provide a detailed method for the identification and isolation of CSCs.


Assuntos
Antineoplásicos , Recidiva Local de Neoplasia , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Humanos , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/metabolismo
10.
Methods Mol Biol ; 2429: 509-513, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35507185

RESUMO

Cancer stem cells (CSCs) are a small subpopulation of self-renewing cancer cells that are present within tumors. In this chapter, we provide a detailed method for the quantification of CSCs in vitro through mammosphere formation.


Assuntos
Neoplasias da Mama , Células-Tronco Neoplásicas , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Células-Tronco Neoplásicas/patologia
11.
Methods Mol Biol ; 2429: 547-554, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35507188

RESUMO

Cancer stem cells (CSCs) are a small subpopulation of self-renewing cancer cells that are present within tumors. Calculating the frequency of tumor-initiating cells is important in the assessment of the number of CSCs present in a cell population. In this chapter, we present a protocol developed for quantification of CSCs from breast cancer tumors that can be adapted to CSCs from other types of tumors.


Assuntos
Neoplasias da Mama , Células-Tronco Neoplásicas , Neoplasias da Mama/patologia , Transformação Celular Neoplásica/metabolismo , Feminino , Humanos , Células-Tronco Neoplásicas/metabolismo
12.
Oncogene ; 41(23): 3177-3185, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35501462

RESUMO

Therapeutic resistance and metastatic progression are responsible for the majority of cancer mortalities. In particular, the development of resistance is a significant barrier to the efficacy of cancer treatments such as chemotherapy, radiotherapy, targeted therapies, and immunotherapies. Cancer stem cells (CSCs) underlie treatment resistance and metastasis. p38 mitogen-activated protein kinase (p38 MAPK) is downstream of several CSC-specific signaling pathways, and it plays an important role in CSC development and maintenance and contributes to metastasis and chemoresistance. Therefore, the development of therapeutic approaches targeting p38 can sensitize tumors to chemotherapy and prevent metastatic progression.


Assuntos
Proteína Quinase 14 Ativada por Mitógeno , Neoplasias , Humanos , Sistema de Sinalização das MAP Quinases , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Neoplasias/metabolismo , Células-Tronco Neoplásicas/patologia , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
13.
Br J Cancer ; 127(2): 173-184, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35273384

RESUMO

Over the past decade, cancer diagnosis has expanded to include liquid biopsies in addition to tissue biopsies. Liquid biopsies can result in earlier and more accurate diagnosis and more effective monitoring of disease progression than tissue biopsies as samples can be collected frequently. Because of these advantages, liquid biopsies are now used extensively in clinical care. Liquid biopsy samples are analysed for circulating tumour cells (CTCs), cell-free DNA, RNA, proteins and exosomes. CTCs originate from the tumour, play crucial roles in metastasis and carry information on tumour heterogeneity. Multiple single-cell omics approaches allow the characterisation of the molecular makeup of CTCs. It has become evident that CTCs are robust biomarkers for predicting therapy response, clinical development of metastasis and disease progression. This review describes CTC biology, molecular heterogeneity within CTCs and the involvement of EMT in CTC dynamics. In addition, we describe the single-cell multi-omics technologies that have provided insights into the molecular features within therapy-resistant and metastasis-prone CTC populations. Functional studies coupled with integrated multi-omics analyses have the potential to identify therapies that can intervene the functions of CTCs.


Assuntos
Exossomos , Células Neoplásicas Circulantes , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Contagem de Células , Progressão da Doença , Exossomos/metabolismo , Humanos , Biópsia Líquida , Células Neoplásicas Circulantes/patologia
14.
Cancer Res ; 82(11): 2057-2065, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35315926

RESUMO

A plethora of treatment options exist for cancer therapeutics, but many are limited by side effects and either intrinsic or acquired resistance. The need for more effective targeted cancer treatment has led to the focus on forkhead box (FOX) transcription factors as possible drug targets. Forkhead factors such as FOXA1 and FOXM1 are involved in hormone regulation, immune system modulation, and disease progression through their regulation of the epithelial-mesenchymal transition. Forkhead factors can influence cancer development, progression, metastasis, and drug resistance. In this review, we discuss the various roles of forkhead factors in biological processes that support cancer as well as their function as pioneering factors and their potential as targetable transcription factors in the fight against cancer.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Fatores de Transcrição Forkhead , Neoplasias , Transição Epitelial-Mesenquimal , Proteína Forkhead Box M1/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/metabolismo , Neoplasias/patologia
15.
Semin Cancer Biol ; 86(Pt 3): 816-826, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34953942

RESUMO

The cytoskeleton plays an integral role in maintaining the integrity of epithelial cells. Epithelial cells primarily employ cytokeratin in their cytoskeleton, whereas mesenchymal cells use vimentin. During the epithelial-mesenchymal transition (EMT), cytokeratin-positive epithelial cells begin to express vimentin. EMT induces stem cell properties and drives metastasis, chemoresistance, and tumor relapse. Most studies of the functions of cytokeratin and vimentin have relied on the use of either epithelial or mesenchymal cell types. However, it is important to understand how these two cytoskeleton intermediate filaments function when co-expressed in cells undergoing EMT. Here, we discuss the individual and shared functions of cytokeratin and vimentin that coalesce during EMT and how alterations in intermediate filament expression influence carcinoma progression.


Assuntos
Filamentos Intermediários , Queratinas , Humanos , Filamentos Intermediários/metabolismo , Queratinas/metabolismo , Vimentina/genética , Vimentina/metabolismo , Citoesqueleto/metabolismo , Transição Epitelial-Mesenquimal/genética
16.
Cancers (Basel) ; 13(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34771571

RESUMO

Metastasis is a complicated and only partially understood multi-step process of cancer progression. A subset of cancer cells that can leave the primary tumor, intravasate, and circulate to reach distant organs are called circulating tumor cells (CTCs). Multiple lines of evidence suggest that in metastatic cancer cells, epithelial and mesenchymal markers are co-expressed to facilitate the cells' ability to go back and forth between cellular states. This feature is called epithelial-to-mesenchymal plasticity (EMP). CTCs represent a unique source to understand the EMP features in metastatic cascade biology. Our group previously established and characterized nine serial CTC lines from a patient with metastatic colon cancer. Here, we assessed the expression of markers involved in epithelial-mesenchymal (EMT) and mesenchymal-epithelial (MET) transition in these unique CTC lines, to define their EMP profile. We found that the oncogenes MYC and ezrin were expressed by all CTC lines, but not SIX1, one of their common regulators (also an EMT inducer). Moreover, the MET activator GRHL2 and its putative targets were strongly expressed in all CTC lines, revealing their plasticity in favor of an increased MET state that promotes metastasis formation.

17.
Pharmaceutics ; 13(10)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34683921

RESUMO

Eye injuries due to corneal abrasions, chemical spills, penetrating wounds, and microbial infections cause corneal scarring and opacification that result in impaired vision or blindness. However, presently available eye drop formulations of anti-inflammatory and antibiotic drugs are not effective due to their rapid clearance from the ocular surface or due to drug-related side effects such as cataract formation or increased intraocular pressure. In this article, we presented the development of a dextran sulfate-based polymer wafer (DS-wafer) for the effective modulation of inflammation and fibrosis and demonstrated its efficacy in two corneal injury models: corneal abrasion mouse model and alkali induced ocular burn mouse model. The DS-wafers were fabricated by the electrospinning method. We assessed the efficacy of the DS-wafer by light microscopy, qPCR, confocal fluorescence imaging, and histopathological analysis. These studies demonstrated that the DS-wafer treatment is significantly effective in modulating corneal inflammation and fibrosis and inhibited corneal scarring and opacification compared to the unsulfated dextran-wafer treated and untreated corneas. Furthermore, these studies have demonstrated the efficacy of dextran sulfate as an anti-inflammatory and antifibrotic polymer therapeutic.

19.
Cancers (Basel) ; 13(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34503207

RESUMO

Extracellular vesicles (EVs) mediate communication in health and disease. Conventional assays are limited in profiling EVs secreted from large populations of cells and cannot map EV secretion onto individual cells and their functional profiles. We developed a high-throughput single-cell technique that enabled the mapping of dynamics of EV secretion. By utilizing breast cancer cell lines, we established that EV secretion is heterogeneous at the single-cell level and that non-metastatic cancer cells can secrete specific subsets of EVs. Single-cell RNA sequencing confirmed that pathways related to EV secretion were enriched in the non-metastatic cells compared with metastatic cells. We established isogenic clonal cell lines from non-metastatic cells with differing propensities for CD81+CD63+EV secretion and showed for the first time that specificity in EV secretion is an inheritable property preserved during cell division. Combined in vitro and animal studies with these cell lines suggested that CD81+CD63+EV secretion can impede tumor formation. In human non-metastatic breast tumors, tumors enriched in signatures of CD81+CD63+EV have a better prognosis, higher immune cytolytic activity, and enrichment of pro-inflammatory macrophages compared with tumors with low CD81+CD63+EVs signatures. Our single-cell methodology enables the direct integration of EV secretion with multiple cellular functions and enables new insights into cell/disease biology.

20.
Nat Commun ; 12(1): 4262, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34253738

RESUMO

The epithelial-mesenchymal transition (EMT) has been implicated in conferring stem cell properties and therapeutic resistance to cancer cells. Therefore, identification of drugs that can reprogram EMT may provide new therapeutic strategies. Here, we report that cells derived from claudin-low mammary tumors, a mesenchymal subtype of triple-negative breast cancer, exhibit a distinctive organoid structure with extended "spikes" in 3D matrices. Upon a miR-200 induced mesenchymal-epithelial transition (MET), the organoids switch to a smoother round morphology. Based on these observations, we developed a morphological screening method with accompanying analytical pipelines that leverage deep neural networks and nearest neighborhood classification to screen for EMT-reversing drugs. Through screening of a targeted epigenetic drug library, we identified multiple class I HDAC inhibitors and Bromodomain inhibitors that reverse EMT. These data support the use of morphological screening of mesenchymal mammary tumor organoids as a platform to identify drugs that reverse EMT.


Assuntos
Antineoplásicos/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias Mamárias Animais/patologia , Mesoderma/patologia , Organoides/patologia , Animais , Azacitidina/farmacologia , Benzamidas/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Processamento de Imagem Assistida por Computador , Neoplasias Mamárias Animais/genética , Camundongos Endogâmicos BALB C , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Neoplasias/metabolismo , Organoides/efeitos dos fármacos , Pirimidinas/farmacologia , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...